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Preface

Mathematical methods has been a dominant research path in computational
vision leading to a number of areas like filtering, segmentation, motion analysis
and stereo reconstruction. Within such a branch visual perception tasks can
either be addressed through the introduction of application-driven geometric
flows or through the minimization of problem-driven cost functions where their
lowest potential corresponds to image understanding.

The 3rd IEEE Workshop on Variational, Geometric and Level Set Methods
focused on these novel mathematical techniques and their applications to com-
puter vision problems. To this end, from a substantial number of submissions,
30 high-quality papers were selected after a fully blind review process covering
a large spectrum of computer-aided visual understanding of the environment.

The papers are organized into four thematic areas: (i) Image Filtering and
Reconstruction, (ii) Segmentation and Grouping, (iii) Registration and Motion
Analysis and (iiii) 3D and Reconstruction. In the first area solutions to image
enhancement, inpainting and compression are presented, while more advanced
applications like model-free and model-based segmentation are presented in the
segmentation area. Registration of curves and images as well as multi-frame
segmentation and tracking are part of the motion understanding track, while in-
troducing computational processes in manifolds, shape from shading, calibration
and stereo reconstruction are part of the 3D track.

We hope that the material presented in the proceedings exceeds your expec-
tations and will influence your research directions in the future. We would like
to acknowledge the support of the Imaging and Visualization Department of
Siemens Corporate Research for sponsoring the Best Student Paper Award.

Nikos Paragios
Olivier Faugeras

Tony Chan
Christoph Schnoerr
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A Study of Non-smooth Convex Flow
Decomposition

Jing Yuan, Christoph Schnörr, Gabriele Steidl, and Florian Becker

Department of Mathematics and Computer Science,
University of Mannheim, 68131 Mannheim, Germany

www.cvgpr.uni-mannheim.de
kiwi.math.uni-mannheim.de

Abstract. We present a mathematical and computational feasibility
study of the variational convex decomposition of 2D vector fields into
coherent structures and additively superposed flow textures. Such de-
compositions are of interest for the analysis of image sequences in exper-
imental fluid dynamics and for highly non-rigid image flows in computer
vision.

Our work extends current research on image decomposition into struc-
tural and textural parts in a twofold way. Firstly, based on Gauss’ inte-
gral theorem, we decompose flows into three components related to the
flow’s divergence, curl, and the boundary flow. To this end, we use proper
operator discretizations that yield exact analogs of the basic continu-
ous relations of vector analysis. Secondly, we decompose simultaneously
both the divergence and the curl component into respective structural
and textural parts. We show that the variational problem to achieve this
decomposition together with necessary compatibility constraints can be
reliably solved using a single convex second-order conic program.

1 Introduction

The representation, estimation, and analysis of non-rigid motions is relevant
to many scenarios in computer vision, medical imaging, remote sensing, and
experimental fluid dynamics. In the latter case, for example, sophisticated mea-
surement techniques including pulsed laser light sheets, modern CCD cameras
and dedicated hardware, enable the recording of high-resolution image sequences
that reveal the evolution of spatial structures of unsteady flows [1].

In this context, two issues are particularly important. Firstly, the design
and investigation of variational approaches to motion estimation that are well-
posed through regularization but do not penalize relevant flow structures are
of interest. A corresponding line of research concerns the use of higher-order
regularizers as investigated, for example, in [2,3,4]. Secondly, representation of
motions by components that capture different physical aspects are important
for most areas of application mentioned above. Referring again to experimental
fluid dynamics, for example, the extraction of coherent flow structures which are
immersed into additional motion components at different spatial scales [5], poses
a challenge for image sequence analysis.

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 J. Yuan et al.

The decomposition of images has become an interesting and active area of
research quite recently. Based on the seminal paper [6] introducing total varia-
tion based image denoising, and on the use of norms that are suited for repre-
senting oscillating patterns [7], a range of novel variational and computational
approaches have been suggested for decomposing images of general scenes into
basic components related to geometry, texture, and noise; e.g., [8,9,10,11].

In the present paper, we focus on function decomposition from the viewpoint
of non-rigid variational motion analysis, and based on our recent work [12].
Specifically, we consider Meyer’s [7] variational model

min TV(fs) , s.t. fs + f t = f ,
∥∥f t

∥∥
G
≤ δ (1)

as a representative approach to the decomposition of a function f into its basic
structural and textural parts fs, f t, and study the feasibility of an extension
to the decomposition of motion vector fields. Our objective is the simultaneous
decomposition of a vector field into physically relevant components related to
its divergence and curl, and the decomposition of these components into parts
with intrinsic variations at different scales.

In section 2, we introduce the discrete representation of vector fields by its
basic components related to divergence, curl, and boundary values. Based on
an accurate discretization employing various finite-dimensional spaces and cor-
responding operators, a variational model for the simultaneous decomposition
of these components is proposed in section 3. From the computational point of
view, we prefer to reformulate our variational problem as a convex conic program
in subsection 4 because all compatibility constraints defining our decomposition
can be included at once. While conic programming has found widespread ap-
plications in all branches of computational science, it has only recently been
suggested for the decomposition of scalar-valued image functions [13]. Numeri-
cal experiments demonstrate the feasibility of our approach in section 5.

2 Vector Field Representation

2.1 Flow Discretization

For discretizing the relevant differential operators we apply the mimetic finite
difference method introduced by Hyman and Shashkov in [14]. This method
preserves the integral identities satisfied by the continuous differential operators
by appropriately defining their discrete analogues simultaneously with respect
to two grids which we call primal and dual grid. Then we define

HP : space of scalar fields on vertices,
HV : space of scalar field on cells,
HS : space of vector fields defined normal to sides,
HE : space of vector fields defined tangential to sides,

and Ho
P , Ho

S , Ho
E as their restricted versions of inner scalar/vector fields, see

Fig. 1. Likewise, we consider the restriced spaces Ho
P , Ho

S , Ho
E also as naturally

embedded in HP , HS , HE with zero boundaries. While HP and HV are equipped



A Study of Non-smooth Convex Flow Decomposition 3

with the usual Euclidian norm, the norms on HS and HE include boundary
weights, see appendix. The discrete versions of the first order operators ∇, div
and curl with respect to the primal and dual grid are given by

G : HP → HE , Div : HS → HV , Curl : HE → HV ,

G : HV → HS , Div : Ho
E → Ho

P , Curl : Ho
S → Ho

P .

Reshaping the scalar/vector fields columnwise into vectors of appropriate lengths,
our first-order operators act on the corresponding vector spaces as the matrices
specified in the appendix.

Finally, for discretizing n · u|∂Ω, we introduce the boundary operator Bn :
HS → ∂HS := HS\Ho

S, which restricts the vector field to the vectors at the
grid’s boundary multiplied by the outer normal vectors. For the matrix form of
the operator, we refer to the appendix.

� � �

� � �

� � �

�

�

�

�

�
� �

�

�

� �
�

HE

HE HE HV

HE

HP HS

HS HS

HS

(i+1,j) (i+1,j+1)

(i+1/2,j+1/2)

(i,j-1) (i,j) (i,j+1)

(i-1,j)

Fig. 1. Spaces HP , HV , HS and HE

2.2 Flow Representation

For the flow vectors u ∈ HS , we see by definition of Div and Bn that

1T
dimHV

Div u = 1T
dim∂HS

Bnu, (2)

where 1n denotes the vector consisting of n ones. This is just the discrete version
of the Gaussian Integral Theorem

∫
Ω

div u dx =
∫

∂Ω
n · u dl. Conversely, we say

that ρ ∈ HV and ν ∈ ∂HS fulfill the compatibility condition if

1T
dimHV

ρ = 1T
dim∂HS

ν (3)

Besides the flow representation u ∈ HS , we will apply a second flow represen-
tation. To this end, consider the operator A : HS → HV ⊕Ho

P ⊕ ∂HS given in
matrix form by

A :=

⎛⎝Div

Curl
Bn

⎞⎠ ∈ R
dimHS+1,dimHS , (4)



4 J. Yuan et al.

where the Curl operator is naturally extended to the whole space HS here. The
operator A has full rank dimHS . Moreover, we see by (2) that (ρ, ω, ν)T is in the
image of A iff ρ and ν fulfill the compatibility condition (3). In this case u can
be obtained from given (ρ, ω, ν)T by u = A†(ρ, ω, ν)T, where A† = (ATA)−1AT

denotes the pseudoinverse of A.

Proposition 1. There exists a one–to–one correspondence between the spaces
HS and

VS := {(ρ, ω, ν)T : 1T
dimHV

ρ = 1T
dim∂HS

ν} ,

where ρ = Div u, ω = Curl u, ν = Bnu, and conversely u = A†(ρ, ω, ν)T.

3 Variational Approaches

3.1 Flow Decomposition

In this section, we want to decompose flow vectors u ∈ HS , resp., (ρ, ω, ν)T ∈ VS

in a meaningful way. To this end, let cρ denote the mean of the divergence of u
and cω the mean of the curl of u, i.e.,

cρ := 1T
dimHV

ρ / dim HV = 1T
dimHV

Div u / dim HV , (5)
cω := 1T

dimHo
P

ω / dim Ho
P = 1T

dimHo
P

Curl u / dim Ho
P . (6)

These are the discrete versions of |Ω|−1
∫

Ω
div(u)dx and |Ω|−1

∫
Ω

curl(u)dx.
Then we can decompose the flow (ρ, ω, ν)T ∈ VS as

(ρ, ω, ν) = (cρ, cω, ν) + (ρo, ωo, 0), (7)

where 1T
dimHV

ρo = 1T
dimHo

P
ωo = 0. Obviously, we have that (cρ, cω, ν)T,

(ρo, ωo, 0)T ∈ VS again, so that u = uc + uo is the corresponding decomposi-
tion of u ∈ HS , where uc := A†(cρ, cω, ν)T and uo := A†(ρo, ωo, 0)T. The vector
uc, resp. (cρ, cω, ν), represents the basic pattern of the non-rigid flow and its
boundary behaviour while uo, resp. (ρo, ωo, 0), is related to the variant flow pat-
tern. Now we want to further decompose the intrinsic flow variation uo into a
structural part us and a texture part ut, i.e., uo = us + ut. By proposition 1,
this corresponds to the decomposition

(ρo, ωo, 0) = (ρs, ωs, 0) + (ρt, ωt, 0).

In summary, our task consists in the decomposition of a given flow field
u ∈ HS as

u = uc + us + ut. (8)

We can apply A to u which provides us, by using in addition (5) and (6), with
(cρ, cω, ν)T and (ρo, ωo, 0)T. Then, inspired by Meyer’s approach (1), we may
compute (ρs, ωs, 0) and (ρt, ωt, 0) as solutions of the minimization problem

J(ρs, ωs, ρt, ωt) = λdTV(ρs) + λcTV(ωs), (9)

s.t. ρs + ρt = ρo, ωs + ωt = ωo,
∥∥ρt

∥∥
G
≤ δd ,

∥∥ωt
∥∥

G
≤ δc,
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where the discrete TV functionals and the discrete versions of the G norm
are defined in the appendix. This variational approach extends Meyer’s model
for the decomposition of scalar-valued functions to the simultaneous decom-
position of vector fields into basic flow patterns. Finally, we may formally ob-
tain us and ut by solving the linear systems (ATA)us = AT(ρs, ωs, 0)T and
(ATA)ut = AT(ρt, ωt, 0)T. However, these systems are very ill-conditioned so
that we prefer to compute the components of u directly by minimizing the cor-
responding functional

J(uc, us, ut) = λdTV(Div us) + λcTV(Curl us) (10)

s.t. uc + us + ut = u,

GDiv uc = 0, GCurl uc = 0, 1T
dimHo

P
Curl us = 0,

Div ut = ρt, Curl ut = ωt,
∥∥ρt

∥∥
G
≤ δd ,

∥∥ωt
∥∥

G
≤ δc.

This approach also fits into our flow estimation model in the next section.
We note that the third constraint is related to the decomposition (7). While
1T

dimHV
Div uo = 0 is automatically fulfilled by the compatibility condition, we

have to take care about 1T
dimHo

P
Curl uo = 0. However, by the G norm constraint

we have Curl ut = Div p for some p which again, by the compatibility condition,
and since Curl maps to Ho

P , implies that 1T
dimHo

P
Curl ut = 0. As a result, we

have only to take us into account.
Finally, we point out that as in the scalar-valued case, some variations of

the approach (10) are easily conceivable. Referring to [8,10], for instance, the
constraint uc +us +ut = u in (10) could be replaced by a L2 penalty term. This
would imply L2 penalty terms for each component in the decomposition.

3.2 Optical Flow Estimation Through Flow Decomposition

In this section, we combine the usual optical flow estimation method with the
structure-texture flow decomposition (8). For a given image sequence {g} ∈ HV ,
we want to compute the components uc with constant divergence and curl, the
large-scale patterns us of divergence and curl with bounded BV-norms, and the
small-scale patterns ut of divergence and curl with bounded G-norms, by solving

J(uc,s,t) =
∥∥Gg · (uc + us + ut) + gt

∥∥2
2 + λdTV(Div us) + λcTV(Curl us) (11)

s.t. GDiv uc = 0, GCurl uc = 0, 1T
dimHo

P
Curl us = 0,

Div ut = ρt, Curl ut = ωt,
∥∥ρt

∥∥
G
≤ δd ,

∥∥ωt
∥∥

G
≤ δc.

Here gt denotes the discretization of the time derivative by a forward difference
and the inner product is taken with respect to HS . We refer to (11) as TV–G
model. However, for the image areas where ∇g = 0, the data term disappears
such that the local constraints through the two G-norm terms lead to unbounded
solutions. Hence, the flow estimation by solving problem (11) is not well-posed.
Therefore, we propose to replace the TV–G model by a TV–L2 model where the
texture flow patterns ut have divergence and curl with bounded L2-norms:
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J(uc,s,t) =
∥∥Gg · (uc + us + ut) + gt

∥∥2
2 + λdTV(Div us) + λcTV(Curl us) (12)

+ γd

∥∥Div ut
∥∥2

2 + γc

∥∥Curl ut
∥∥2

2

s.t. GDiv uc = 0, GCurl uc = 0, 1T
dimHo

P
(Curl us + Curl ut) = 0.

Our experiments show that this approach works well although the superiosity
of the G–norm over the L2–norm in capturing (scalar) oscillating patterns was
experimentally shown in [15].

3.3 Incompressible Optical Flow Estimation

Incompressible flows which are divergence-free are common in computational
fluid dynamics and 2D turbulence. According to the Helmholtz decomposition,
a 2D vector field can be decomposed into an irrotational part and a soleniodal
part which is divergence–free. The discete counterpart of the Helmholtz decom-
position with respect to our mimetic finite difference discretization has been in-
troduced in [12]. Specifically, we obtain that a divergence-free vector u ∈ HS can
be written as u = G⊥ψ for some ψ ∈ HP , where the operator G⊥ : HP → HS is
defined in the appendix. By definition of G

⊥, it is easy to check that Div G
⊥ = 0,

and that the restricted operator G⊥|Ho
P

maps to Ho
S . Now we want to estimate

the components uc, us and ut of a divergence–free flow u = G⊥ψ, i.e.,

u = uc + us + ut = G
⊥ψc + G

⊥ψs + G
⊥ψt, (13)

where, by regarding the boundary conditions, ψc ∈ HP and ψs, ψt ∈ Ho
P . Let

�c := Curl G⊥|Ho
P

: Ho
P → Ho

P and � := Curl R
HS

Ho
S

G⊥ : HP → Ho
P , where

RHS

Ho
S

denotes the restriction of HS to Ho
S by boundary cutting. Then we can

rewrite our TV–G approach (11) with respect to (13) as

J(ψc,s,t) =
∥∥Gg ·G⊥(ψc + ψs + ψt) + gt

∥∥2
2 + λcTV(�cψ

s) (14)

s.t. G�ψc =0, 1T
dimHP

ψc =0, 1T
dimHo

P
�cψ

s =0, �c ψt = ωt,
∥∥ωt

∥∥
G
≤ δc,

and our TV–L2 approach (12) as

J(ψc,s,t) =
∥∥Gg ·G⊥(ψc + ψs + ψt) + gt

∥∥2
2 + λcTV(�cψ

s) + γc

∥∥�cψ
t
∥∥2

2 (15)

s.t. G�ψc = 0, 1T
dimHP

ψc = 0, 1T
dimHo

P
(�cψ

s +�cψ
t) = 0.

We will see that in areas where ‖∇g‖ 	 1, the solution to (14) becomes sensitive
to small pertubations while (15) gives reasonable results.

4 Optimization

Our computational approach to solving (10) is based on second-order cone pro-
gramming (SOCP) [16]. This amounts to minimizing a linear objective function
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subject to the constraints that several affine functions of the variables have to
lie in a second order cone Ln+1 ⊂ Rn+1 defined as the convex set

Ln+1 =
{(

x; t
)

= (x1, . . . , xn, t)�
∣∣∣ ‖x‖2 ≤ t

}
. (16)

With this notation, the general form of a SOCP is given by

inf
x∈Rn

f�x , s.t.
(
Aix + bi; cT

i x + di

)
∈ Ln+1 , i = 1, . . . ,m. (17)

Problem (17) is a convex program for which efficient, large scale solvers are
available [17]. In this paper, we used the SeDuMi-package [18]. In connection
with TV–based image decomposition the application of SOCPs, was recently
suggested in [13].

Using the notation given in the appendix, we reformulate the variational
approach (10) as a SOCP:

J(uc, us, ut) = λd1T
dimHV

v + λc1T
dimHo

P
w (18)

s.t. uc + us + ut = u , GDiv uc = 0 , GCurl uc = 0 , 1T
dimHo

P
Curl us = 0 ,

Div ut = Div pd , Curl ut = Div pc ,
(
(GDiv us)

Vi,j
; v

Vi,j

)
∈ L5 ,(

(GCurl us)
P o

i,j
; w

P o
i,j

)
∈ L5 ,

(
(pd)Vi,j

; δd

)
∈ L5 ,

(
(pc)Po

i,j
; δc

)
∈ L5

In order to incorporate the quadratic terms of the variational approaches to
optical flow estimation (11), (12), (14), and (15), we use the following rotated
version of the standard cone:

Rn+2 :=
{(

x, xn+1, xn+2
)� ∈ R

n+2 , xn+1xn+2 ≥
1
2
‖x‖2 , xn+1 + xn+2 ≥ 0

}
Fixing xn+2 = 1/2, we have xn+1 ≥ ‖x‖2. Below, we confine ourselves to rewrit-
ing (14), and (15) as SOCPs. The SOCPs corresponding to (11), (12) look very
similar.

The incompressible flow estimation approach (14), rewritten as a SOCP,
reads

J(ψc,s,t) = v + λc1T
dimHo

P
w (19)

s.t. G�ψc = 0 , 1T
dimHP

ψc = 0 , 1T
dimHo

P
�cψ

s = 0 , �cψ
t = Div pc(

(G�cψ
s)

Vi,j
; w

Vi,j

)
∈ L5 ,

(
(pc)P o

i,j
; δc

)
∈ L5 ,(

Gg ·G⊥(ψc + ψs + ψt) + gt; v, 1/2
)
∈ RdimHV +2

Approach (15), on the other hand, becomes

J(ψc,s,t) = v + γdt + λc1T
dimHo

P
w (20)

s.t. G�ψc = 0 , 1T
dimHP

ψc = 0 , 1T
dimHo

P
�cψ

s = 0 , 1T
dimHo

P
�cψ

t = 0(
(G�cψ

s)
Vi,j

; w
Vi,j

)
∈ L5 ,

(
Gg ·G⊥(ψc + ψs + ψt) + gt; v, 1/2

)
∈RdimHV +2 ,(

�cψ
t; t, 1/2

)
∈ RdimHo

P +2
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5 Numerical Experiments

In this section, we show some experiments with flow decomposition and flow
restoration.

Flow Decomposition. Figure 2 shows a turbulent flow field u as ground truth,
along with its divergence ρ and curl ω. Figures (3) and (2) show the variational
decomposition computed with the approach (10). Note that the structural and
textural components recovered the interesting motion patterns at different scales,
which are not easily visible in the flow u itself. The decomposed velocities are
shown below in Fig. (4).

Fig. 2. Ground truth data to be decomposed: flow field u (left), its divergence field ρ
(center), and its curl field ω (right)

Fig. 3. Decomposition of u from Fig. 2 with the approach (10). From left to right. Top:
ρc, ρs, ρt. Bottom: ωc, ωs, ωt. The structure and texture components reveal turbulent
flow patterns at different scales which are not easily visible in the flow u itself.

Flow Estimation. We report result validating the flow estimation models (14)
and (15). We first created a divergence-free ground truth flow field u by super-
imposing a dominant laminar flow (both divergence- and curl-free) with some
turbulent vortices structures, see Fig. 5. Using this flow, an artificial image se-
quence was created for which |∇g(x)| �= 0, ∀x ∈ Ω.

Figures 6, 7 and 8 show the decomposition-based optical flow estimates. The
uc component nicely recovered the laminar flow, whereas the structural and tex-
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Fig. 4. The components of the flow u from Fig. 2: uc (left), us (middle), and ut (right).
The vectors of us, ut are scaled-up for better visibility. Note that despite |u| ≈ |uc|,
structural and texture part us and ut are recovered well.

Fig. 5. Ground truth data u and its curl to be estimated from a corresponding artifi-
cially created image sequence. u is a superposition of a laminar flow (div- and curl-free)
and turbulent vortices.

tural components reveal the turbulent curl field. Furthermore, the TV−L2 reg-
ularizer turned out to be more robust than the TV−G model in connection with
the degenerate data term commonly used for variational optical flow estimation.

6 Conclusion and Further Work

Along the lines of current research on variational convex decomposition of image
functions, we presented a range of variational models extended to the decomposi-
tion and estimation of vector fields which represent image motions. Using proper
discretizations, these models achieve a twofold decomposition: three components
of the flow field representing flow variations at different scales, along with a fur-
ther decomposition of the divergence and the curl into a structural and a textural
part, respectively. We also presented a variational model for the decomposition-
based estimation of divergence-free flows which is of interest for experimental
fluid dynamics. Numerical results conducted by convex second-order cone pro-
gramming showed the feasibility of our approach as well as promising results
with respect to the processing and analysis of complex flow patterns in real-
world applications.

Our further work concerns the study of various TV − ∗ combinations of
regularizers for flow field decomposition which in comparison to image decom-
position may behave differently due to the data term and corresponding image
pre-processing. Furthermore, we will investigate more robust models for using
G-norm regularization in connection with the (mathematically) degenerate data
term for optical flow estimation.
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Fig. 6. Estimated and decomposed flow corresponding to Fig. 5, using the approach
(14). From left to right. Top: uc, us and ut. Bottom: ωc, ωs and ωt. Note, that the
laminar component is almost completely represented by uc, ωc, whereas the turbu-
lent patterns are captured by the remaining components at two different scales. The
texture components ut, ωt reflect the lack of robustness of G-norm regularization in
combination with the degenerate data term for optical flow estimation.

Fig. 7. Results analogous to Fig. 6, computed with TV − L2 regularization (15), how-
ever. The sensitivity of the texture part (left column) has been removed.

Fig. 8. Close-up view of a section of Fig. 7. From top to bottom: ωs, ωt, ωs + ωt with
the corresponding flows as overlays.
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Appendix

Let our primal grid consist of m×n vertices. Reshaping the scalar/vector fields colum-
nwise into vectors, we can identify

HP = R
mn, Ho

P = R
(m−2)(n−2), HV = R

(n−1)(n−1),

HS = R
m(n−1)+n(m−1), Ho

S = R
(m−1)(n−2)+(n−1)(m−2) ,

and finally HE, Ho
E as HS, Ho

S. While HP and HV are equipped with the usual Euclid-
ian norm, the norm on HS and Ho

E are given cell adapted as follows: for u ∈ HS and
i = 1, . . . , m − 1; j = 1, . . . , n − 1, let

uVi,j
:=

1√
2

(ui,j+ 1
2
, ui+1,j+ 1

2
, ui+ 1

2 ,j , ui+ 1
2 ,j+1)

T.

and

‖u‖2
HS

:=
m−1

i=1

n−1

j=1

‖uVi,j
‖2
2 =

m−1

i=1

n−1

j=1

1
2
(u2

i,j+ 1
2

+ u2
i+1,j+ 1

2
+ u2

i+ 1
2 ,j + u2

i+ 1
2 ,j+1).

Similarly, we introduce the norm on Ho
E with respect to u

P o
i,j

. Further we define the

TV functional for ρ ∈ HV as TV(ρ) := |G ρ|HS , where

|u|HS =
m−1

i=1

n−1

j=1

‖uVi,j
‖2 =

m−1

i=1

n−1

j=1

1
2
(u2

i,j+ 1
2

+ u2
i+1,j+ 1

2
+ u2

i+ 1
2 ,j

+ u2
i+ 1

2 ,j+1
)

and for ω ∈ Ho
P as TV(ω) := |G|Ho

P
ρ|Ho

E
. Finally, the discrete G norms are given by

‖ρ‖G := inf
ρ=Div p

‖ ‖pVi,j
‖2

i,j
‖∞, ‖ω‖G := inf

ω=Div p
‖ ‖p

Po
i,j

‖2
i,j

‖∞.

Let

Dm :=

−1 1 0 . . . 0 0 0
0 1 −1 . . . 0 0 0

. . .
. . .

. . .
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

∈ R
m−1,m

, D̃m :=

2 0 0 . . . 0 0 0
−1 1 0 . . . 0 0 0

0 1 −1 . . . 0 0 0

. . .
. . .

. . .
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 −2

∈ R
m+1,m

,

Then the discrete first order operators can be identified with the following matrices:

G =
In ⊗ Dm

Dn ⊗ Im
, G =

In−1 ⊗ D̃m−1

D̃n−1 ⊗ Im−1
,

Div = In−1 ⊗ Dm, Dn ⊗ Im−1 , Div = In−2 ⊗ Dm−1, Dn−1 ⊗ Im−2 ,

Curl = Dn ⊗ Im−1, −In−1 ⊗ Dm , Curl = Dn−1 ⊗ Im−2, −In−2 ⊗ Dm−1 ,

where ⊗ denotes the Kronecker product of matrices. The operator G
⊥ : HP → HS is

defined by

G
⊥ =

−Dn ⊗ Im

In ⊗ Dm
,

It is easy to check that the restricted operator G
⊥|Ho

P
maps to Ho

S. Finally, the bound-
ary operators are given by

Bn =
In−1 ⊗ Bm 0

0 Bn ⊗ Im−1
, Bm :=

−1 0 . . . 0 0
0 0 . . . 0 1 ∈ R

2,m.

where 0 are zero matrices of appropriate sizes.
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Abstract. The need to regularize tensor fields arise recently in various
applications. We treat in this paper tensors that belong to matrix Lie
groups. We formulate the problem of these SO(N) flows in terms of
the principal chiral model (PCM) action. This action is defined over a
Lie group manifold. By minimizing the PCM action with respect to the
group element, we obtain the equations of motion for the group element
(or the corresponding connection). Then, by writing the gradient descent
equations we obtain the PDE for the Lie group flows. We use these
flows to regularize in particular the group of N-dimensional orthogonal
matrices with determinant one i.e. SO(N). This type of regularization
preserves their properties (i.e., the orthogonality and the determinant).
A special numerical scheme that preserves the Lie group structure is
used. However, these flows regularize the tensor field isotropically and
therefore discontinuities are not preserved. We modify the functional
and thereby the gradient descent PDEs in order to obtain an anisotropic
tensor field regularization. We demonstrate our formalism with various
examples.

1 Introduction

For more than a decade PDE’s are widely used to tackle many image processing
problems such as image restoration, segmentation, image enhancing and much
more. Especially interesting are the nonlinear PDE’s which in the context of
image restoration has been proved to have remarkable denoising, deblurring as
well as edges preserving properties. We will mention some of these works such
as the pioneering work by Perona and Malik [19] on image denoising, the work
by Osher and Rudin [16] on image enhancement and many others which are
discussed extensively in [1,31,11,23]. Some of the image processing problems
may be formulated in terms of Lagrangian actions where the variation of the
Lagrangian leads to the equations of motion. The gradient descent equations
then defines the PDE’s that we wish to apply to images in order to obtain the
desired result [15,21] (i.e, segmentation, denoising, etc).

Earlier studies dealt with scalar valued images. It was later generalized to
vector-valued images (see for example [35,2,24,22,29] and references therein).
Works on constrained regularization of vector-valued image were treated in the
literature as well in [20,28,3,26,12].

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 13–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In the last years new methods which consider tensor-valued images have
emerged. In these new methods at each point of the two (or three) dimensional
image space a tensor is attached rather than a scalar or a vector. This tensor
field might be noisy and therefore one has to regularize it in order to extract its
original texture. Moreover, the tensor field has certain properties that we wish
to preserve along the flow (e.g., orthogonality, unit norm, etc) and it might lie on
a non-flat manifold. In order to regularize these fields and preserve their original
properties one has to adopt new methods, both analytical and numerical.

A solution to the problem of orthogonal tensor field regularization was pro-
posed by Deriche et al. [30,5]. In their formalism, the orthogonality of the tensor
field is preserved by adding a constraint term to the unconstraint gradient de-
scent equation using Lagrange multipliers. The constraint term preserve the
orthonormality of the vector basis along the flow. The unconstraint gradient
descent equation was obtained by minimizing the unconstrained φ functional.
Different methods for regularization of tensor fields were proposed recently by
[32,4,18,17,13]. Their work is mainly in relation with the DT-MRI application.

In this work we suggest a novel and natural framework to the problem of
tensor field regularization. We assume here that the tensor at each point is a
Lie group element and construct a regularization flow that respects the group’s
structure. The constrained gradient descent equation will be derived directly
from a Lagrangian without any additional constraint e.g. without a lagrange
multiplier. The functional is defined directly on the Lie group manifold. In order
to solve the PDE numerically such that the Lie group field evolves on the group
manifold we use the Lie group integrating methods introduced in [8,10]. Our
main example is the SO(N) group which is of relevant in DT-MRI yet the
formalism is of general applicability.

The plan of the paper is as follows: In section 2 we will give some mathemat-
ical preliminaries that will be used in this work. In section 3 we present the gen-
eralized Principal Chiral Model (PCM) action and derive the gradient descent
equations. The gradient descent equations for this action will define the PDE
flow on the group manifold. In section 4 we describe how to implement the flow to
evolve on group manifold in general and on SO(N) in particular. We will present
and use modern Lie-group numerical integration methods. Results are given in
section 5 where we demonstrate regularization of noisy three-dimensional orthog-
onal tensor field. Finally, concluding remarks are given in section 6.

2 A Bit About Lie Groups

For our discussion it is essential to introduce some of the basic definitions con-
sidering Lie groups and Lie algebra.

Definition 1. A Lie group is a group G which is a differentiable manifold
equipped with smooth product G × G �→ G.

Definition 2. The Lie algebra g of Lie group G is defined as the linear vector
space of all tangent vectors to G at the identity. This tangent space is denoted
TIG.



Denoising Tensors via Lie Group Flows 15

Definition 3. A real matrix Lie group is a smooth subset G ⊆ IRN×N closed
under matrix product and matrix inversion. The identity matrix is denoted I ∈ G.

Definition 4. A Lie algebra of a matrix Lie group is a linear subspace g ⊆
IRN×N equipped with the operation g × g �→ g which is the Lie bracket (the
commutator) [A,B] = AB − BA. This operation is bilinear, skew-symmetric
([A,B] = −[B,A]), and satisfies the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0. (1)

Definition 5. The elements which span the Lie algebra space are called the
generators of the Lie group or the infinitesimal operators of the group. Let ta, tb
and tc be the generators of the Lie group, then their algebra is close under the
commutator operation

[ta, tb] = f c
abtc, (2)

where f c
ab are the structure constants of the group and are antisymmetric in their

lower indices f c
ab = −f c

ba.

We will demonstrate our study on the special orthogonal matrix Lie group,
SO(N). Its elements are N ×N orthogonal matrices with determinant one. This
group is a subgroup of O(N) which is the orthogonal group and its elements are
N × N orthogonal matrices. The Lie algebra of SO(N) and O(N) is denoted
so(n) and consists of N × N skew-symmetric matrices. O(N) and SO(N) are
special cases of quadratic Lie group which takes the form

G = {X |XTPX = P}, (3)

where P is a constant matrix (for O(N) and SO(N), P is identity matrix). The
corresponding Lie algebra is given by g = {A|PA + AT P = 0}.

In order to map elements of the Lie algebra into the Lie group one may use
the following maps

Definition 6. The exponential mapping expm : g �→ G is defined as

expm(A) =
∞∑

k=0

Ak

k!
, (4)

where expm(0) = I. Note that for A which is sufficiently near o ∈ g the exponen-
tial mapping has a smooth inverse given by the matrix logarithm logm : G �→ g.

For quadratic groups one may also use the Cayley mapping

Definition 7. The Cayley mapping Cay : g �→ G is defined as

Cayρ(x) = (I − ρx)−1(I + ρx), (5)

where ρ is a non-negative constant. When ρ = 1/2 the Cayley map is a special
case of the Padé approximant to the exponential, Cay1/2(x) = expm(x)+O(x3).
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Definition 8. The inverse of the Cayley mapping invcay : G �→ g is defined as

invcayρ(X) =
1
ρ
(I + X)−1(X − I). (6)

Note that if X has an eigenvalue -1, this transform is undefined.

Definition 9. The adjoint representation, Ad, and its derivative, ad, are given
by the formulae

AdA(B) = BAB−1, (7)
adA(B) = [A,B] = AB −BA. (8)

3 The Generalized Principal Chiral Model

The principal chiral models (PCMs) which are known also as the sigma models
arise in many branches of physics (e.g., classical and quantum physics, condensed
matter, high-energy physics, etc...). These models are known to be integrable
[33,34,7]. We consider a variation of the sigma models which is the generalized
principal chiral model (GPCM) and is given by the action [26,9]

L =
∫

d2x ημνHab(g)(g−1∂μg)a(g−1∂νg)b, (9)

where g takes values in the Lie group G, η is the spatial metric and Hab(g) is
invertible symmetric dimG × dimG matrix such that

Hab(g) = H(g)Kab, (10)

where Kab is the bilinear Killing form

Kab = Tr(tatb), ta, tb ∈ g. (11)

The bilinear form is considered as the metric over the Lie group manifold.
Since we are interested in tensor fields which are attached to two-dimensional

flat image space, we will take the metric ημν to be the Euclidean metric ημν =
δμν . The integration is taken over the two-dimensional image space. The term
Aμ = g−1∂μg is known as the flat-connection and also as the Yang-Mills gauge
field. The flat-connection is an element of the Lie algebra and therefore it may
be represented in terms of the generators of the Lie algebra such that

Aμ = g−1∂μg = Aa
μta. (12)

Also, it obeys the Bianchi identity

∂μAν − ∂νAμ + [Aμ, Aν ] = 0. (13)

In order to obtain the equations of motion we vary the GPCM action with
respect to g−1δg to obtain

−Had δL
δρd

= ∂μA
μa + Γ a

bcA
b
μA

μc = 0, (14)
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where we have used the relation

δAa
μ = ∂νδρ

a − fa
bcA

b
νδρ

c, (15)

and where δρ = g−1δg. The connection Γ a
bc is a sum of two parts

Γ a
bc = Sa

bc + γa
bc, (16)

where Sa
bc is defined as

Sa
bc =

1
2
(F a

bc + F a
cb), (17)

F a
bc = (H−1)apf q

pbHqc.

The second part are the Christoffel symbols for the metric Hab

γa
bc =

1
2
(H−1)ad(∂bHcd + ∂cHbd − ∂dHbc). (18)

Taking Hab to be constant on the group manifold (i.e., Hab = Kab) we have
γa

bc = 0. The bilinear form over the SO(N) group manifold, for example, is
negative definite and is given by Kab = Tr(tatb) = −2δab. Plugging Hab into Eq.
(17) we have,

F a
bc = 2(fa

bc + fa
cb). (19)

However, since the structure constants are antisymmetric in their indices (i.e.,
fa

bc = −fa
cb), F a

bc = 0 and we are left with the equation of motion

∂μA
μa = 0. (20)

Contracting this equation with the group generators ta from the right we have

∂μA
μata = ∂μA

μ = 0. (21)

Since Aμ = g−1∂μg we may write the equation of motion in the following form

∂μ(g−1∂μg) = 0. (22)

In order to write the gradient descent equations we have to remember that the
term ∂μ(g−1∂μg) is in the Lie algebra and therefore the left hand side (LHS)
of the gradient descent equation should contain a term which is also in the Lie
algebra. Therefore, we suggest the following expression

g−1 ∂g

∂t
= ∂μ(g−1∂μg) (23)

= ∂x(g−1∂xg) + ∂y(g−1∂yg).

where
(
g−1 ∂g

∂t

)
∈ g.
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Multiplying by g from the left of both sides we have

∂g

∂t
= g∂μ(g−1∂μg). (24)

This equation has the form of an orthogonal ODE flow

∂g

∂t
= ga, (25)

where g ∈ G and a ∈ g. The numerical solutions of this type of equation were
discussed in [10,8]. However, since a and g in our case depend on the spatial
coordinates as well as the time, our equation is an orthogonal PDE flow. Note
that ∂g

∂t ∈ TgG and the RHS (right hand side) lies also in TgG since it is a left-
trivialization form of the tangent written as ga. In [10,8] the tangent is written
in its right-trivialization form ag ∈ TgG. A different orthogonal PDE flow which
has the same form was discussed in [30,5].

4 Implementation

The implementation of Eq. (24) is not straightforward. In order to get the desired
results, the flow has to evolve on the group manifold. This means that the group
element g has to preserve its properties (i.e., orthogonality and unit determinant)
for every time t. Since the group manifold is not a linear space, we cannot
use classical PDEs integration schemes since the group structure will not be
preserved along the flow. For the same reason we cannot use finite-difference
schemes in order to evaluate the spatial derivatives. Therefore, the first challenge
is to find a scheme which enables to evaluate the spatial derivative such as
∂μg ∈ TgG and g−1∂μg ∈ g for any number of iterations.

This goal is achieved by using the exponential mapping in order to express
the Lie group element in terms of the Lie algebra. Then, the spatial derivative of
the group element reads ∂μexp(a) where now we have to evaluate the derivative
of the exponent. For the scalar case a ∈ IR and for Abelian groups (where a, ã ∈
g commute) the formula for the derivative of the exponent is d

dxexp(a(x)) =
a′(x)exp(a(x)). However, this formula does not hold for non-Abelian groups such
as SO(N) with N > 2 since [a, ã] �= 0. Therefore, one should apply a different
formula.

The correct formula may be written in terms of the dexp functionsuch that

∂

∂x
exp(a(x, t)) = dexpa(x,t)a

′(x, t)exp(a(x, t)), (26)

where a′ is the derivative with respect to the spatial coordinate. The dexp func-
tion is defined as a power series as follows

dexpAB = B +
1
2!

[A,B] +
1
3!

[A, [A,B]] (27)

+
1
4!

[A, [A, [A,B]]] + . . . =
∞∑

k=0

1
(k + 1)!

adk
AB.
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As we have mentioned earlier, the derivative of the exponential mapping should
lie in Tg(x,t)G. In the right-trivialization form, the tangent may be written as
a(x, t)g(x, t) which is exactly the expression in the RHS of Eq. (26). However,
since in Eq. (24) the tangent is written in its left-trivialized form g(x, t)a(x, t) ∈
Tg(x,t)G, we should use the left-trivialized version of Eq. (26) which takes the
form [10]

∂

∂x
exp(a(x, t)) = exp(a(x, t))dexp−a(x,t)a

′(x, t), (28)

where the sign of the commutators in the dexp series has been changed by
adding a minus sign. Finally, we multiply this equation from the left by g−1 =
exp(−a(x, t)) to obtain

g−1∂μg = dexp−a(x,t)∂μa(x, t) . (29)

Then, the flow reads

∂g(x, t)
∂t

= g(x, t)∂μ

[
dexp−a(x,t)(∂μa(x, t))

]
. (30)

Since the Lie-algebra is a linear space, the partial derivative of a may be evalu-
ated using e.g. the forward finite difference scheme

∂a

∂x
≈ a(x + h, y)− a(x, y)

h
, (31)

∂a

∂y
≈ a(x, y + h)− a(x, y)

h
,

where h is the grid size. The partial derivative of the dexp function will be
evaluated using the backward finite difference scheme. The values of the Lie-
algebra elements on the grid will be calculated using the logm operator such
that

logm : g(x, y, t) �→ a(x, y, t). (32)

In order that the proposed flow evolves on the group manifold we use methods
of Lie group integration mainly due to Iserles et al. [10]. We apply the simplest
time integration operator which is the Lie-group version of the forward Euler
operator. It reads

gn+1 = φ(dt a(gn, tn))gn, (33)

where dt is the time step, a is the element of the algebra and φ : g �→ G. For our
‘left-trivialized’ flow we may use the following forward Euler operator

gn+1 = gnφ(dt a(gn, tn)). (34)

Therefore, our time step operator reads

gn+1 = gn exp
(
∂μ dexp−a(x,t)(∂μa(x, t))

)
(35)

= gn exp
(
∂μ dexp−log g(x,t)(∂μlog g(x, t))

)
.
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Although on each iteration we have to calculate the dexp power series, this
calculation is almost immediate since this power series converges very fast. The
calculation of the first eight terms is accurate enough where the norm of the
eighth element if already of order 10−6.

These calculations may be also be done via the Cayley mapping where the
dcay function will replace the dexp function. However, despite of the Cayley
mapping advantages (fast calculations), we have found that it is not a suitable
choice for our algorithm. The main reason is that we have to use the invcay
function instead of the logm. As we have pointed out in definition 8, the invcay
mapping is undefined when X ∈ G has an eigenvalue −1. Since some elements
of SO(N) do have an eigenvalue −1, this causes the algorithm to be unstable
numerically and to diverge.

5 Experiments

We demonstrate in Fig. 1 the isotropic regularization of an orthogonal tensor
field using our proposed orthogonal PDE flow. We have built a synthetic tensor
field of SO(3) matrices which represents 3D rotations (Fig. 1a). We have cre-
ated a discontinuity such that the tensor field is divided into two homogenous
regions where each region corresponds to a different 3D rotation. The orthog-
onal matrices are represented in terms of the three column vectors where for
SO(N) matrix, these vectors form an N-dimensional orthonormal vector basis.
A Gaussian noise has been added to the original field as normally distributed
random rotations around the axes. We have applied Eq. (24) to the noisy field
(Fig. 1b) for 100 iterations and with a time step of dt = 0.1. As expected, the
result of the regularization process is a smooth averaged tensor field where the
discontinuity has not been preserved (Fig. 1c).

5.1 Anisotropic Regularization

It is clear that Eq. (24) has to be modified in order to obtain an anisotropic
regularization of the tensor field. It is well known due to the work by Perona
and Malik that this goal may be achieved by replacing the diffusion constant
by a spatially dependent function which is a function of the image gradient.
This function has to be smooth and monotonically decreasing with c(0) = 1
and c(+∞) = 0 whereas it controls the amount of local regularization. We will
adopt this attitude. Since in our proposed model the operator which measures
the gradients over the tensor field is g−1∂μg, a suitable choice for this function
will be

c(x, y, t) = exp(−||g−1(x, y, t)∂μg(x, y, t)||2/k2), (36)

where k is the threshold. The flow then takes the form
∂g

∂t
= g∂μ(c(x, y, t)g−1∂μg). (37)

We have tested the modified equation on the same noisy tensor field which is
presented in Fig. 1b. The result of the anisotropic regularization is presented
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(a) (b) 

(c) (d) 

Fig. 1. (a) Original orthogonal tensor field. (b) Noisy field. (c) The result of applying
the isotropic orthogonal PDE flow. (d) The results of applying the anisotropic orthog-
onal PDE flow for 50 iterations and time step dt = 0.1. The original tensor field has
been recovered.

in Fig. 1d. One can see that at the end of the process the original tensor field
has been recovered where the discontinuity has been preserved. In both cases,
the isotropic and the anisotropic, the properties of the matrices (orthogonality
and determinant one) has been preserved. The threshold k has been set by hand
where we have found that its value has to be around one.

The distance between the regularized tensor field and the original tensor field
was approximated using the MSE criterion. Let H be the original tensor field
and Ĥ the regularized tensor field, then

MSE(Ĥ −H) =
1

MN

M−1∑
m=0

N−1∑
n=0

|Ĥm,n −Hm,n|2, (38)

where MN is the size of the grid. For the result which is presented in Fig. 1d we
have MSE = 0.0057 which means that the regularized tensor field is very close
to the original one. We have repeated the same experiment for the weighting
function
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c(x, y, t) =
1

1 +
( ||g−1∂μg||

k

)2 . (39)

We have set the threshold to a value of k = 0.4 where the results in this case
were as good as in the previous case with MSE = 0.006.

6 Summary

In this work we proposed a novel framework to tackle the problem of regularizing
of Lie group tensor fields in general and the SO(N) group in particular. This was
obtained using a PDE flow which was derived directly from a minimization of
the GPCM action. Since this action is defined over Lie-group manifold which is a
constrained manifold, we arrived at the constrained flow without any additional
operations. We have applied the proposed flow to a three-dimensional orthogonal
tensor field in order to regularize it. Then, we have modified the flow à la Perona
and Malik in order to obtain an anisotropic regularization of the tensor field.
This framework is general where it can be applied to any dimension directly and
without any additional complexities.

This work may be extended to many directions. We would like to apply this
framework to the regularization problem of DT-MRI data sets. This framework
may also be integrated with recent level-set frameworks [14,27,25] in order to
consider regularization of tensor fields which are attached to non-flat manifolds.
Also, other Lie-group manifolds rather than SO(N) may be considered. All of
these challenging problems as well as many others are under investigation.
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Abstract. In this paper we generalize the iterated refinement method,
introduced by the authors in [8], to a time-continuous inverse scale-space
formulation. The iterated refinement procedure yields a sequence of con-
vex variational problems, evolving toward the noisy image.

The inverse scale space method arises as a limit for a penalization
parameter tending to zero, while the number of iteration steps tends
to infinity. For the limiting flow, similar properties as for the iterated
refinement procedure hold. Specifically, when a discrepancy principle is
used as the stopping criterion, the error between the reconstruction and
the noise-free image decreases until termination, even if only the noisy
image is available and a bound on the variance of the noise is known.

The inverse flow is computed directly for one-dimensional signals,
yielding high quality restorations. In higher spatial dimensions, we intro-
duce a relaxation technique using two evolution equations. These equa-
tions allow accurate, efficient and straightforward implementation.

1 Introduction

The processing of noisy images is a central task in mathematical imaging. Over
the last decades, a variety of methods have been proposed ranging from filtering
methods to variational approaches to techniques based on the solution of partial
differential equations. Since the noise in images is usually expected to be a small
scale feature, particular attention has been paid to methods separating scales,
in particular those smoothing small scale features faster than large scale ones,
so-called scale space methods.

Scale space methods are obtained for example by nonlinear diffusion filters
[9] of the form

∂u

∂t
= div(γ(|∇u|2)∇u), (1)

in Ω × R+ with u(x, 0) = f(x), where f : Ω → R denotes the given image
intensity (Ω being a bounded open subset in R2) and u : Ω × R+ → R the flow
of smoothed images. The diffusion coefficient involves a positive and monotone
function γ. For such methods it can be shown that small scales are smoothed
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faster than large ones, so if the method is stopped at a suitable final time, we may
expect that noise is smoothed while large-scale features are preserved to some
extent. Diffusion filters can be related to regularization theory (cf. [13]) with
certain regularization functionals, but foundations of choosing optimal stopping
times are still missing.

Recently, inverse scale space methods have been introduced in [12], which
are based on a different paradigm. Instead of starting with the noisy image
and gradually smoothing it, inverse scale space methods start with the image
u(x, 0) = 0 and approach the noisy image f as time increases, with large scales
converging faster than small ones. Thus, if the method is stopped at a suitable
time, large scale features may already be incorporated into the reconstruction,
while small scale features (including the “noise”) are still missing. The inverse
scale space method can also be related to regularization theory, in particular iter-
ated Tikhonov regularization (cf. [6,12]) with the same regularization functionals
as for diffusion filters. The construction of inverse scale space methods in [12]
worked well for quadratic regularization functionals, but did not yield convinc-
ing results for other important functionals, in particular for the total variation.
In this paper we present a different version of constructing inverse scale space
methods as the limit of an iterated refinement procedure previously introduced
by the authors (cf. [8]) and demonstrate its applicability to image restoration.
With the new approach we are able to perform inverse scale space methods even
for the total variation functional, and, in contrast to diffusion filters, we obtain
a simple stopping criterion for the methods.

2 Iterated Refinement

In [8], an iterated refinement procedure for total variation restoration was intro-
duced, motivated by the variational problem

u = argmin
u∈BV (Ω)

{
|u|BV +

λ

2
‖f − u‖2L2

}
(2)

for some scale parameter λ > 0, where BV (Ω) denotes the space of functions
with bounded variation on Ω, equipped with BV seminorm which is formally
given by

|u|BV =
∫

Ω

|∇u|,

also referred to as the total variation (TV) of u. This is the ROF model, intro-
duced to the field of image restoration in [11].

In [8] the authors showed that an iterative procedure (which turned out
to be equivalent to Bregman’s relaxation method, cf. [1], and proximal point
algorithms, cf. [3]) could be used to improve the quality of regularized solutions
to inverse problems, based on regularization functionals as in (2). Given a convex
functional J(u), e.g., J(u) = |u|BV , the iterated refinement method defines a
sequence {uk} by:



Nonlinear Inverse Scale Space Methods for Image Restoration 27

– Set u0 = 0, p0 = 0;
– Given uk−1 and pk−1,

• step 1: compute uk = argmin
u

Qk(u) with

Qk : u �−→ J(u)− J(uk−1)− 〈pk−1, u− uk−1〉+
λ

2

∥∥f − u
∥∥2

L2 , (3)

where 〈·, ·〉 denotes the usual duality product;
• step 2: update the dual variable pk = pk−1 + λ(f − uk).

– Increase k by 1 and continue.

The quantity pk is identified with ∂J(uk), as discussed below. This procedure
improves the quality of reconstruction for many problems with discontinuous
solutions, e.g., deblurring and denoising of images (cf. [7,8]) when ‖f − u‖2L2 is
replaced by an appropriate fitting term for individual examples.

Note that the regularization term used in the first step is a so-called gener-
alized Bregman distance between u and uk−1, defined as follows,

D(u, v) = J(u)− J(v)− 〈u− v, p〉, p ∈ ∂J(v),

where ∂J(v) is the subgradient of the convex functional J(v). Note that the sub-
gradient may contain more than one element if the functional J is not continu-
ously differentiable, so that the distance would depend on the specific choice of
the subgradient. However, we shall suppress the dependence on the subgradient
in the notation below. Note that for strictly convex functionals the subgradient
contains at most one element and D(u, v) is a scalar distance, that is strictly
positive for u �= v. We can then rewrite the functional Qk minimized in each
iteration step as: Qk(u) = D(u, uk−1) + λ

2 ‖f − u‖2L2. The Bregman distance
and the associated iteration were not used in this fashion previously, but they
have been rather employed to minimize functions H(u, f) where H is a (usually
complicated) convex function of u having a unique minimum (cf. e.g., [3]).

It was shown in [8] that the iterated refinement method yields a well-defined
sequence of minimizers uk and subgradients pk ∈ ∂J(uk). Moreover, it was
proved that the sequence {uk} satisfies ‖uk − f‖2L2 ≤ ‖uk−1 − f‖2L2 and if f ∈
BV (Ω), then ‖uk− f‖2L2 ≤ J(f)

k , i.e., uk converges monotonically to f in L2(Ω)
with a rate of 1√

k
. Of course, this convergence result does not give particular

information on the behavior of the method as a denoising method, in particular
for the typical case of a noisy image f .

The key denoising result obtained in [8] is as follows: for g ∈ BV (Ω) we have

D(g, uk) < D(g, uk−1) if ‖f − uk‖L2 ≥ τ‖g − f‖L2 (4)

for any τ > 1. Thus, the distance between a restored image uk and a possible
exact image g is decreasing until the L2-distance of f and uk is larger than the
L2-distance of f and g. This result can be used to construct a stopping rule for
our iterative procedure. If we have an estimate of the variance of the noise, i.e.,



28 M. Burger et al.

f = g + n, ‖n‖L2 = σ, where g ∈ BV (Ω) is the noise-free image and n is the
noise, then we can stop the iteration at the first k for which ‖f −uk+1‖L2 < τσ.
The choice of τ allows some freedom to apply the stopping rule also in the case
when we only know an upper bound for σ.

It is interesting to note that for TV-based denoising where J(u) = |u|BV ,
the sequence {uk} has the following interpretation (cf. [8]):

– Let u1 = arg minJ(u) + λ
2 ‖f − u‖2L2 ;

– Define v1 = f − u1;
– Then inductively for k ≥ 2, let

uk = argmin
{
J(u) +

λ

2
‖f + vk−1 − u‖2L2

}
and f + vk−1 = uk + vk.

In other words, we add the “small scales” vk−1 back to f and perform ROF
minimization with f replaced by f + vk−1 and decompose this function into
“large scales” (uk) plus “small scales” (vk). This interpretation already yields a
multiscale interpretation of the method, since the “small scales” are somehow
doubled in each step and so their larger parts can be incorporated into the large
scale part after the next iteration. A related procedure involving the ROF model
using Tikhonov-Morozov rather than Bregman iteration which multiplies λ by
two in each step yields a multiscale method suggested in [6] and analyzed in [14].

3 Inverse Scale Space Methods

In the following we generalize the concept of inverse scale space theory introduced
in [6,12] in the context of Tikhonov regularization for the case

J(u) =
1
2

∫
Ω

|∇u|2. (5)

We shall derive general inverse scale space methods as a limit of the iterated
refinement procedure for λ→ 0, concentrating in particular on the functional

J(u) =
∫

Ω

√
|∇u|2 + ε2. (6)

Recall that for a special λ > 0 the iterative refinement procedure constructs
sequences uλ

k of primal and pλ
k of dual variables such that uλ

0 = pλ
0 = 0,

uλ
k = arg min

u∈BV (Ω)

{
D(u, uλ

k−1) +
λ

2
‖f − u‖2L2

}
pλ

k = ∂J(uλ
k) = J ′(uλ

k).

From the Euler-Lagrange equation J ′(uλ
k)−pλ

k−1+λ(uλ
k−f) = 0 and pλ

k = J ′(uλ
k)

we are led to the relation:

pλ
k − pλ

k−1

λ
= f − uk, k = 1, 2, . . .



Nonlinear Inverse Scale Space Methods for Image Restoration 29

for the updates. We now reinterpret λ = Δt as a time step and the difference
quotient on the left-hand side as an approximation of a time derivative. Setting
tk = kΔt, pΔt(tk) = pΔt

k , and uΔt(tk) = uΔt
k , we have pΔt

k−1 = pΔt(tk−1) =
pΔt(tk −Δt) and

pΔt(tk)− pΔt(tk −Δt)
Δt

= f − uΔt(tk).

For Δt ↓ 0, dropping subindex k we arrive at the differential equation

∂p

∂t
(t) = f − u(t), p(t) = J ′(u(t)), (7)

with initial values given by u(0) = p(0) = 0. We assume
∫

Ω f = 0.
If the flow u(t) according to (7) exists and is well behaved (which can be

shown under reasonable assumptions on the functional J , in particular for total
variation, cf. [2]), it is an inverse scale space method in the sense of [6]. This
means that the flow starts at u(0) = 0 and incorporates finer and finer scales
(with the concept of scale depending on the functional J) finally converging
again to the image f as t → ∞, i.e. limt→∞ u(t) = f . Through (7) the image
u(t) flows from the smoothest possible image (u(0) = 0) to the noisy image f .
Our goal is to use the flow to denoise the image, and therefore we shall use a
finite stopping time for the flow. As we shall see below, we can use a simple
stopping criterion related to the fitting term ‖u(t)− f‖2 only.

3.1 Behaviour for Quadratic Regularization

We start by briefly reviewing the results obtained in [6] for (5). In this case we
obtain from the variation of the functional J the equation p = −Δu in Ω with
boundary condition ∂u

∂n = 0 on ∂Ω. Given p,
∫

Ω
p = 0, there exists a unique

solution u = −Δ−1p (since
∫

Ω u =
∫

Ω f = 0).
A simple manipulation (and the fact that ∂f

∂t = 0) leads us to the equation
∂
∂t (u−f) = Δ−1(u−f) = −A(u−f), with the notation A := −(Δ)−1. Thus, the
function v = u − f satisfies a simple linear ordinary differential equation in the
function space, whose solution is given by u(t)−f = v(t) = e−tAv(0) = −e−tAf.
It is well-known that A is a positive definite operator and thus, e−tAf decays to
zero. As a consequence, the difference u(t) − f = −e−tAf decays exponentially
as t→∞.

3.2 General Convex Regularization

We consider the case of general convex functionals on the digital image space, i.e.,
J : RN → R. If J is continuously differentiable, we can compute the implicitly
defined u = u(p) as the solution of J ′(u(p)) = p. Note that if J is smooth and
strictly convex, the Jacobian of J ′ given by J ′′ is positive definite, and hence, the
existence of a solution is guaranteed under a standard condition like J(0) = 0
by the inverse function theorem.
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A possibility to invert the equation for u is the use of the the dual functional
(cf. [4]), defined by J∗(p) := supu

{
〈u, p〉−J(u)

}
. Then one can easily show that

p = ∂uJ(u) is equivalent to u = ∂pJ
∗(p) and we obtain an explicit relation for

u(p) provided we can compute the dual functional J∗.
Under the above conditions, we can obtain some important estimates for the

inverse scale space flow (7) associated to J . We start by computing the time-
derivative of the fitting functional and the (partial) time derivative of u:

1
2

d

dt
‖u(t)− f‖2L2 = 〈u(t)− f, ∂tu(t)〉

∂tu(t) =
d

dt
(∂pJ

∗(p(t))) = H∗(p(t))∂tp(t) = −H∗(p(t))(u(t) − f),

where we used the notation H∗ = ∂2
ppJ

∗ for the Hessian of the dual functional.
If J∗ is strictly convex, then there exists a constant a > 0 such that H∗(q) ≥ a
for all q ∈ R. Hence, combining the above estimates we deduce

1
2

d

dt
‖u− f‖2L2 ≤ −〈u(t)− f,H∗(p(t))(u(t)− f)〉 ≤ −a‖u− f‖2L2

and from a standard ordinary differential equation argument we deduce

‖u(t)− f‖L2 ≤ e−a(t−s)‖u(s)− f‖L2 ≤ e−at‖f‖L2

if t > s. Thus, as t→∞ we obtain convergence u(t) → f with exponential decay
of the error in the L2-norm.

Note that for the above L2-estimates, we do not need severe assumptions on
f , so that the estimate holds for a clean image as well as for a noisy version used
in the algorithm. If we assume that f is a clean image and J(f) < ∞, then we
can also obtain a decay estimate on the error in the Bregman distance via

d

dt
D(f, u(t)) =

d

dt

[
J(f)− J(u(t))− 〈f − u(t), p(t)〉

]
= −〈f − u(t), ∂tp(t)〉 = −‖u(t)− f‖2L2 ≤ −‖f‖2e−2at.

In fact

D(f, u(t))−D(f, u(s)) ≤ 1
2a
‖f‖2L2[e−2at − e−2as] < 0,

D(f, u(t)) ≤ 1
2a
‖f‖2L2[e−2at − 1] + J(f).

All results so far give information about the convergence of u to the clean
image f (with finite value J(f)) only. In a more practical situation, f is the
noisy version of an image g to be restored, and we might even have J(f) = ∞,
while J(g) < ∞. In this case we can derive a similar estimate as follows:

d

dt
D(g, u) = 〈−∂tp(t), g − u(t)〉 = −〈f − u(t), g − u(t)〉

= −‖f − u(t)‖2L2 − 〈f − u(t), g − f〉 ≤ −‖f − u(t)‖2L2

2
+
‖f − g‖2L2

2
.
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The last term on the right-hand side is negative if ‖f−u(t)‖L2 > ‖f−g‖L2. This
means that u(t) approaches any “noise free” image g in the sense of Bregman
distance, as long as the residual (the L2 difference between u(t) and f) is larger
than the difference between the noisy image f and g. The left-hand side, namely
the residual ‖f −u(t)‖L2 can be monitored during the iteration, it only involves
the known noisy image f and the computed restoration u(t). The right-hand side
is not known for the ”real” image g to be restored, since g itself is unknown. How-
ever, in typical imaging situations, an estimate for the noise variance is known,
which yields a bound of the form ‖f − g‖L2 ≤ σ. The above estimate guarantees
that the distance D(g, u) is decreasing at least as long as ‖f − u(t)‖L2 > σ,
and one could terminate the inverse scale space flow for the minimal t∗ such
that ‖f − u(t∗)‖L2 = σ. This stopping criterion is well-known in the theory of
iterative regularization of inverse problems as the so-called discrepancy principle
(cf. [5,10] for a detailed discussion).

4 Direct Solution for Regularized Total Variation in 1D

In the following we discuss the numerical solution of (7) in 1D. We recall
here that p(t) ∈ ∂J(u(t)) and u ∈ ∂J∗(p). For the (nondifferentiable) total
variation functional we only have (multivalued) subgradients instead of deriv-
atives and therefore we shall instead consider the regularized total variation
J(u) =

∫ √
|∇u|2 + ε2, with

∂J(u(t)) = −div

(
∇u√

|∇u|2 + ε2

)
= p(t). (8)

Note that since ∂J(u + c) = ∂J(u), the solution of (8) is not unique if we
take the standard assumption that u satisfies homogeneous Neumann boundary
condition. In this case, the solvability condition is

∫
p(x, t) dx = 0 for all t and

the conservation of mean value gives an additional property implying uniqueness,
namely

∫
u dx ≡

∫
f dx = 0.

For a fixed time t, we have to solve

−
(

ux√
u2

x + ε2

)
x

= p in D = (a, b),
∫ b

a

u dx = 0, (9)

If we denote q :=
ux√

u2
x + ε2

, then

q(x, t) = −
∫ x

a

p(s, t) ds =
∫ b

x

p(s, t) ds (10)

and hence, ux = ε
q√

1− q2
. Therefore,

u(x, t) = ε

∫ x

a

q(y, t)√
1− q2(y, t)

dy + C (11)
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where C is a constant chosen to normalize
∫ b

a
u(x) dx = 0. We mention that

the same formula for u can be obtained by duality arguments, since J∗ can be
explicitly calculated in spatial dimension one.

5 Relaxed Inverse Scale Space Flow

In order to implement the process in any dimension we resort to a new kind of
approximation.

Consider the following coupled equations:

ut = −p(u) + λ(f + v − u),
vt = α(f − u), (12)

where u|t=0 = v|t=0 = 0 and α > 0 is a constant. These equations can be
viewed as a time-continuous interpretation of the discrete iterated refinements
procedure.

It is easy to see that the steady state of these equations (ut = 0, vt = 0) is:
u = f , v = p(f)

λ . We still would like to show that for any f ∈ BV , the solutions
converge to this steady state. We will do the analogue of this only for the simple
linear case below. Our numerical evidence indicates that this is indeed true for
the regularized TV flow in one and two dimensions.

By taking the time derivative of the first equation in (12) and substituting
for vt by using the second equation, we can view this process as a single, second
order in time, evolution:

utt + (λ + pu)ut + αλu = αλf, (13)

where u|t=0 = 0, ut|t=0 = λf . Here we assume p(0) = 0. We now analyze the
linear case, where −p(u) = Δu. Rewriting the flow in the frequency domain ξ, by
taking the Fourier transform, the characteristic equation is r2+(λ+|ξ|2)r+αλ =
0, with the solutions

r± =
−(λ + |ξ|2)±

√
(λ + |ξ|2)2 − 4αλ

2
. (14)

Using the Taylor approximation
√

1 + x ≈ 1 + x
2 , x 	 1, one can approximate

(for frequencies for which |ξ|4 � αλ)

r± ≈
−(λ + |ξ|2)(1± (1− 2αλ

(λ+|ξ|2)2 ))

2
, (15)

obtaining two roots with different characteristic behavior: r+ ≈ −(λ+|ξ|2), r− ≈
−αλ

λ+|ξ|2 . The Fourier transform of the solution is

U(ξ) = (c+er+t + c−er−t + 1)F (ξ) (16)

where c+ =
λ + r−
r+ − r−

, c− =
λ + r+

r− − r+
.
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We observe that the first part, containing r+, corresponds to a Gaussian
convolution, which decays very quickly with time. The approximate second part,
containing r−, corresponds to the inverse scale-space solution (with some scaling
in time) which we actually want to solve. Our numerical results indicate that
this kind of behavior extends to the nonlinear process.

From (14) we see that for both parts to have decaying exponential solutions
(real valued r±) we should require α ≤ λ

4 . In the numerical experiments below
we set α = λ

4 .
The relaxed inverse scale space flow has about the same complexity as the

standard gradient descent to steady state approach of ROF. Moreover, for the
linear case, where J(u) = 1

2

∫
|∇u|2, as shown in [12], we obtain a step size

estimation of O(1) for the direct solution of inverse scale space flow.

6 Results

In this section we present some numerical examples. We solve the 1D problems by
the direct approach discussed above and the relaxed inverse flow in order to test
and compare their behavior. Motivated by the accordance of one-dimensional re-
sults, we only used the computationally cheaper relaxed flow for two-dimensional
tests. In all experiments we use a uniform spatial grid of size h = 1, a standard
assumption in imaging problems.

Example 1. We first consider a 1D denoising problem. Figure 1 shows the
clean signal g, the noisy signal f , the noise n (σ = ‖n‖L2 = 10 ≈ 24%‖g‖2) and
the solutions recovered from ROF, direct inverse flow and relaxed inverse flow,
respectively. The typical signal loss can be observed in the result of ROF, and as
expected the loss is much smaller in the results of the inverse scale flows. This
confirms the intuition that the inverse TV flows yields better restorations than
the original ROF model.
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(a) clean signal g
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(b) noisy signal f, SNR=12.5
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(d) ROF, λ=0.02, SNR=17.7
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(e) direct TV flow, SNR=17.1
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(f) relaxed TV flow, SNR=21.6
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Fig. 1. 1D denoising. (a): clean g; (b): noisy f ; (c): noise n; (d)-(f): u recovered from
ROF, direct inverse flow and relaxed inverse flow
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(a) original image (b) noisy image, SNR=7.4 (c) Gaussian noise, σ=40

Fig. 2. 2D shape image. (a): original image; (b): noisy image; (c): Gaussian noise.

(a) u: ROF, SNR=9.9 (b) f−u: ||f−u||
2
=39.8. λ=0.03 (c) part of f−u

(d) u
5
: Bregman ROF, SNR=11.8 (e) ||f−u

5
||

2
=40. λ=0.001 (f) part of f−u

(g) u: inverse TV flow, SNR=12.5 (h) ||f−u||
2
=39.7. λ=0.01, t=720 (i) part of f−u

Fig. 3. 2D denoising on shape image. row-by-row: denoised u, residual w = f − u and
part of w from ROF, Bregman ROF and relaxed inverse TV flow.

The regularization parameter was chosen as ε = 1.5 and for all three exper-
iments, and all restored images u satisfy ‖f − u‖L2 ≈ σ. The reason we use a
relatively large ε here is that the direct solver method is sensitive to numerical er-
ror. Moreover, we used the parameter λ = 0.02 for ROF, time step Δt = 5×10−9

for the inverse TV flow, and λ = 0.001, Δt = 0.1 for the relaxed inverse TV flow.
However, the difference of Δt and t in these two inverse flow experiments are
only due to the different scaling, the number of time steps until the stopping
time t∗ = min{t : ‖f − u(t)‖2 ≤ σ} was reached, is about the same.

Example 2. Now we turn to the denoising of 2D images. In this example we
consider an image with different scales and shapes and corrupted by Gaussian
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(a) original image (b) noisy image, SNR=6.3 (c) Gaussian noise, σ=40

(d) u: ROF, SNR=14.3 (e) u
2
: Bregman ROF, SNR=15.1 (f) u: inverse TV flow, SNR=14.8

(g) f−u: ||f−u||
2
=40. λ=0.011 (h) ||f−u

2
||

2
=38.6. λ=0.0055 (i) ||f−u||

2
=39.9. λ=0.01, t=570

Fig. 4. 2D denoising on satellite image. first row: original, noisy image and noise;
second row and third row: u and w = f − u from ROF, Bregman ROF and relaxed
inverse TV flow, column-by-column.

noise, which is shown in Figure 2. SNR(f) = 7.4, σ = ‖f − g‖2 = 40. Figure
3 shows the results from ROF, iterated TV refinement (Bregman ROF), and
relaxed inverse TV flow, row-by-row respectively. In each row we display the
resulting restoration u and its corresponding residual w = f − u and part of w.
One observes that for the ROF model, visible signal is still contained in w (e.g.
the small blocks and grids) and it’s much smaller in the other two models. This
is also quantified by the signal-to-noise ratios SNR(u) = 9.9, 11.8, 12.5 obtained
for these three experiments respectively.

Example 3. In this final example we denoise a real satellite image with the
same methods as used in example 2. Figure 4 shows the data and results. Here
we have SNR(f) = 6.3 and SNR(u) = 14.3, 15.1, 14.8 for ROF, Bregman ROF
and inverse TV flow, respectively. Again one can see some visible signal in w
(such as the long antenna) for the ROF model, but less signal for the other two
experiments.
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Abstract. While methods based on partial differential equations (PDEs) and
variational techniques are powerful tools for denoising and inpainting digital im-
ages, their use for image compression was mainly focussing on pre- or post-
processing so far. In our paper we investigate their potential within the decod-
ing step. We start with the observation that edge-enhancing diffusion (EED), an
anisotropic nonlinear diffusion filter with a diffusion tensor, is well-suited for
scattered data interpolation: Even when the interpolation data are very sparse,
good results are obtained that respect discontinuities and satisfy a maximum–
minimum principle. This property is exploited in our studies on PDE-based image
compression. We use an adaptive triangulation method based on B-tree coding for
removing less significant pixels from the image. The remaining points serve as
scattered interpolation data for the EED process. They can be coded in a compact
and elegant way that reflects the B-tree structure. Our experiments illustrate that
for high compression rates and non-textured images, this PDE-based approach
gives visually better results than the widely-used JPEG coding.

1 Introduction

In recent years several partial differential equations (PDEs) and variational techniques
have shown their usefulness in so-called inpainting methods [19,2,4,13,27]. Here one
aims at filling in missing informations in certain corrupted image areas by means of sec-
ond or higher-order PDES. The basic idea is to regard the given image data as Dirichlet
boundary conditions, and interpolate the data in the inpainting regions by solving appro-
priate boundary value problems. Related variational and PDE methods have also been
investigated for more classical interpolation problems such as zooming into an image
by increasing its resolution [3,18]. For such interpolation problems with data given on
a regular grid, these techniques are in competition with cubic or quintic splines, radial
basis functions and sinc-based interpolation techniques; see e.g. [17,20]. If the data are
not available on a regular grid, scattered data interpolation techniques have been pro-
posed [11,22], among which radial basis functions such as thin plate splines [9] are
popular and well-performing.

Interestingly, not many of the variational and PDE-based interpolation and inpaint-
ing techniques have been used for scattered data interpolation. It seems that the sparsity

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 37–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of the scattered data constitutes a real challenge for these techniques: While second-
order PDEs may satisfy a maximum–minimum principle, they often create singularities
at isolated interpolation points in 2-D. Higher-order PDEs, on the other hand, may give
smoother solutions, but the violation of an extremum principle can lead to undesirable
over- and undershoots; see e.g [3].

The goal of the present paper is twofold: First we address the before mentioned
problem by investigating a partial differential equation that has not been considered
for interpolation problems before, namely edge-enhancing anisotropic diffusion (EED)
[28]. It uses a diffusion tensor that allows smoothing along discontinuities while inhibit-
ing smoothing across them. In our experiments we will see that this technique performs
favourably in the context of scattered data interpolation. A second goal of our paper is
to investigate if this property can be used for lossy image compression. While contem-
porary image compression methods are dominated by concepts that involve the discrete
cosine transform (such as the widely-used JPEG standard [23]) or the discrete wavelet
transform (in JPEG2000 [26]), our goal is to give a proof-of-concept that there are al-
ternatives where PDEs may be beneficial. The basic idea is to reduce the image data to
a well-adapted set of significant sparse points that can be coded in an efficient way. De-
coding is accomplished by using these scattered data and interpolating them by means
of edge-enhancing anisotropic diffusion. As a tool for creating a useful sparse point
representation, we consider the B-tree triangular coding (BTTC) by Distasi et al. [8],
since it is relatively simple and allows an efficient coding of the sparsified image data.

Our paper is organised as follows. In Section 2 we describe PDE-based interpolation
techniques and show that scattered data interpolation with EED performs particularly
well. In Section 3 we review the BTTC model for image coding and describe how it can
be coupled with PDE-based interpolation. Experiments on EED-based image coding
are presented in Section 4, and the paper is concluded with a summary in Section 5.

Related Work. In the context of image compression, PDEs and related variational tech-
niques have mainly been used as a preprocessing step before coding [10,16] or as a post-
processing tool for removing coding artifacts [1,12,21,29,30]. Our works differs from
these papers by the fact that we use PDEs within the decoding step rather than as pre- or
postprocessing tools. Chan and Zhou [5] used total variation regularisation in order to
modify the coefficients in a wavelet decomposition such that oscillatory edge artifacts
are reduced, while Solé et al. [25] investigate three PDEs for interpolating structures in
digital elevation maps and report the most favourable results with the Laplacian oper-
ator. An interesting coding scheme that exploits scattered data interpolation has been
proposed by Demaret et al. [7]. They construct an adaptive Delaunay triangulation that
is used for decoding the image by linear interpolation. Their experiments show that it
can be an alternative to JPEG 2000 coding for texture-free images.

2 PDE-Based Interpolation

We start by considering a PDE approach to image interpolation. First we discuss a gen-
eral model, then we investigate four possibilities for smoothing operators, and finally
we present an experiment that illustrates their properties.
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2.1 General Model

Let Ω ⊂ IRn denote an n-dimensional image domain. We want to recover some un-
known scalar-valued function v : Ω → IR, from which we know its values on some
subset Ω1 ⊂ Ω. Our goal is to find an interpolating function u : Ω → IR that is smooth
and close to v in Ω \Ω1 and identical to v in Ω1.

We may embed this problem in an evolution setting with some evolution parameter
(the ”time”) t ≥ 0. It solution u(x, t) gives the desired interpolating function as its
steady state (t → ∞). We initialise the evolution with some function f : Ω → IR that
is identical to v on Ω1 and that is set to some arbitrary value (e.g. to 0) on Ω \Ω1:

f(x) :=
{

v(x) if x ∈ Ω1
0 else.

(1)

We consider the evolution

∂tu = (1−c(x))Lu − c(x) (u − f) (2)

with f as initial value,
u(x, 0) = f(x), (3)

and reflecting (homogeneous Neumann) boundary conditions on the image boundary
∂Ω. The function c : Ω → IR is the characteristic function on Ω1, i.e.

c(x) :=
{

1 if x ∈ Ω1
0 else,

(4)

and L is some elliptic differential operator. The idea is to solve the steady state equation

(1−c(x))Lu − c(x) (u − f) = 0 (5)

with reflecting boundary conditions. In Ω1 we have c(x) = 1 such that the interpolation
condition u(x) = f(x) = v(x) is fulfilled. In Ω \Ω1 it follows from c(x) = 0 that the
solution has to satisfy Lu = 0. This elliptic PDE can be regarded as the steady state of
the evolution equation

∂tu = Lu (6)

with Dirichlet boundary conditions given by the interpolation data on Ω1.

2.2 Specific Smoothing Operators

Regarding the elliptic differential operator L, many possibilities exist. The simplest one
uses the Laplacian Lu := Δu leading to homogeneous diffusion [15]:

∂tu = Δu. (7)

A prototype for a higher order differential operator is the biharmonic operator Lu :=
−Δ2u giving the biharmonic smoothing evolution

∂tu = −Δ2u. (8)

Using it for interpolation comes down to thin plate spline interpolation [9], a rotationally
invariant multidimensional generalisations of cubic spline interpolation. Note that only
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the second-order differential operators allow a maximum–minimum principle, where
the values of u stay within the range of the values of f in Ω1.

Nonlinear isotropic diffusion processes are governed by Lu := div (g(|∇u|2)∇u).
This gives [24]

∂tu = div (g(|∇u|2)∇u) (9)

where the diffusivity function g is decreasing in its argument, since the goal is to re-
duce smoothing at edges where |∇u| is large. One may e.g. choose the Charbonnier
diffusivity [6]

g(s2) =
1√

1 + s2/λ2
(10)

with some contrast parameter λ > 0. Since (9) uses a scalar-valued diffusivity we name
this process isotropic (in contrast to the nomenclature in [24]).

Real anisotropic behaviour is possible when a diffusion tensor is used. As a proto-
type for nonlinear anisotropic diffusion filtering we consider edge-enhancing diffusion
(EED) [28]. The idea is to reduce smoothing across edges while still permitting diffu-
sion along them. The EED diffusion tensor has one eigenvector parallel to ∇uσ, where
uσ is obtained from convolving u with a Gaussian with standard deviation σ. The corre-
sponding eigenvalue is given by g(|∇uσ|2) with a diffusivity function such as (10). The
other eigenvectors are orthogonal to ∇uσ and have corresponding eigenvalues 1. If we
use the convention to extend a scalar-valued function g(x) to a matrix-valued function
g(A) by applying g to the eigenvalues on A and leaving the eigenvectors unchanged,
then EED can be formally linked to Lu := div (g(∇uσ∇u�

σ )∇u). Hence, its evolution
is governed by

∂tu = div (g(∇uσ∇u�
σ )∇u). (11)

2.3 Experiments on Interpolation

In order to evaluate the potential of the preceding PDEs for scattered data interpola-
tion, we have discretised them with central finite differences in space. For the diffusion
equations, we performed a semi-implicit time discretisation with SOR as solver for the
linear systems of equations, while for biharmonic smoothing an explicit scheme was
used. Runtimes for a non-optimised C implementation on a 1.5 GHz Centrino laptop
range between a few seconds and several minutes for a 256× 256 image.

In Figure 1 we present an experiment that illustrates the use of the different smooth-
ing operators for scattered data interpolation. It depicts a zoom into the famous lena
image, where 2 percent of all pixels have been chosen randomly as scattered interpo-
lation points. We observe that homogeneous diffusion is not very suitable for scattered
data interpolation, since it creates singularities at the interpolation points. This can be
avoided with interpolation using biharmonic smoothing. It gives fairly good results, but
suffers from over- and undershoots near edges due to the violation of an extremum prin-
ciple (see e.g. the shoulder). Interestingly, going from homogeneous diffusion to non-
linear isotropic diffusion does not give an improvement: Although nonlinear isotropic
diffusion may allow discontinuities, its interpolant is too flat and tends to keep many
interpolation points as isolated singularities. The fact that EED, on the other hand, gives
the best results shows the importance of the anisotropic behaviour. Its ability to smooth
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along edges seems to be very beneficial for avoiding singularities at interpolation points.
Moreover, this second-order PDE respects a maximum–minimum priciple, such that the
solution is within the greyscale bounds of the interpolation points.

Fig. 1. (a) Top left: Zoom into the test image lena, 256 × 256 pixels. (b) Top middle: Grey
values of the scattered interpolation points (2 percent of all pixels, chosen randomly). (c) Top
right: Interpolation by linear diffusion. (d) Bottom left: Biharmonic smoothing. (e) Bottom
middle: Nonlinear isotropic diffusion (λ = 0.1). (f) Bottom right: EED (λ = 0.1, σ = 1).

Table 1. Average absolute errors (AAE) for the PDEs used for scattered data interpolation in
Figure 1

PDE method AAE
homogeneous diffusion (7) 16.977
biharmonic smoothing (8) 15.787
Charbonnier diffusion (9) 21.864
edge-enhancing diffusion (11) 14.584

Our visual impression is confirmed by Table 1, in which we have computed the
average absolute error (AAE) between the interpolated image and the original image.
For two images (uij) and (vij) with N pixels, the AAE is defined as

AAE(u, v) =
1
N

∑
i,j

|uij − vij |. (12)
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Nonlinear isotropic diffusion performes worst, followed by homogeneous diffusion and
biharmonic smoothing, while EED gives the smallest interpolation error. This shows
that for scattered data interpolation, EED is a very promising PDE that has not been
investigated in this context before.

3 Image Coding by Binary Trees

Now that we have seen that EED is useful for scattered data interpolation, we want to
exploit this technique for image compression. To this end we have to couple it with a
method that provides a useful sparse image representation with scattered data.

3.1 Creating Scattered Interpolation Points

Our image compression and decompression scheme relies on an adaptive sparsification
of the image data by means of the triangulation from B-tree triangular coding (BTTC)
[8]. In this coding, an image is decomposed into a number of triangular regions such
that within each region it can be recovered in sufficient quality by interpolation from the
vertices. In our case, all regions are isosceles rectangular triangles. The decomposition
into triangles then is stored in a binary tree structure.

In order to describe the compression procedure, let us assume we have an image
v = (vij) of size (2m +1)× (2m +1). Smaller images should be filled up to such a size
in a suitable way. Initially, the image is split by one of its diagonals into two triangles.
The four image corners (1, 1), (1, 2m+1), (2m+1, 1) and (2m+1, 2m+1) are vertices
of these two triangles.

To refine this initial configuration, an approximation (uij) of the image (vij) is
calculated by using only the grey values from the vertices and interpolating linearly
within each triangle. If the error eij := |uij − fij | satisfies eij ≤ ε for all pixels
(i, j), with a given tolerance parameter ε > 0, the representation by triangles is con-
sidered sufficiently fine. Otherwise, for each pixel (i, j) for which eij > ε holds, the
triangle which contains (i, j) is split into two similar triangles by the height on its hy-
potenuse. The centre of the hypotenuse thereby becomes an additional vertex of the
representation. By recalculating approximation errors within the new smaller triangles,
it is determined whether to split these again etc. Since the approximation error is zero
at vertices, triangles with legs of length 1 are not split further, which guarantees that the
recursive splitting terminates. Moreover, vertices throughout the process have integer
coordinates. Which pixels are vertices is indicated in a vertex mask of size equal to the
image that is generated during the triangulation.

One point which needs additional consideration is the treatment of pixels located
on the sides of triangles during the splitting process. If the error bound is violated in
such a pixel, it is sufficient for our compression and decompression method to split one
of the two adjacent triangles. This allows to reduce the number of triangles noticeably
since in regions with fine details, a large number of small triangles occur, and many
pixel positions then happen to be located on sides.
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3.2 Coding

To efficiently store the triangulation, we notice that the hierarchical splitting of trian-
gles gives rise to a binary tree structure. Each triangle occurring during the splitting
process is represented by a node while leaves correspond to those triangles which are
not divided further. When a triangle is split, its two subtriangles become the children
of its representing node. To store the structure of the tree, one traverses the tree and
stores one bit per node: a 1 for a node that has children, and a 0 for a leave. Preorder
or level-order traversal are equally possible. Note that by the tree structure, the vertex
mask is fully determined. Further space in storing the tree is saved by measuring glob-
ally the minimal and maximal depth of the tree. Only for nodes at intermediate levels,
the corresponding bits are stored.

For coding the grey values in all vertices, we first zig zag traverse the sparse im-
age created with the binary tree structure and store it in a sequence of grey values.
This sequence is then compressed with Huffman coding [14], a lossless variable-length
prefix code that assigns smaller codes to more frequent characters. It also uses a tree
structure.

Our entire coded image format then reads as follows:

– image size (4 bytes)
– minimal and maximal depth of the binary tree (together 2 bytes)
– binary string encoding binary tree structure (1 bit for each node between minimal

and maximal depth, filled up with zeros to the next byte boundary)
– first grey-value in a sequence of grey values (1 byte)
– minimal and maximal depth of the Huffman coded binary tree (2 bytes)
– binary string for Huffman-coded binary tree (1 bit for each node between minimal

and maximal depth, filled up with zeros to the next byte boundary)
– Huffman dictionary (less than 256 bytes)
– sequence of Huffman-coded grey values

We further enhanced this coding by a (lossy) requantisation step that reduced the
number of grey values in the initial image from 256 to 64.

3.3 Decoding

Decompression takes place in two steps. In the first step, the vertex mask is recovered
from the binary tree representation, and the stored grey values are placed at the ap-
propriate pixel positions to give the sparse image. To recover the vertex mask, the tree
is generated in the same order as it was stored. Along with generating nodes, vertex
positions are calculated and marked in the vertex mask.

The second step consists in the interpolation of the image, where the vertex mask
becomes the interpolation mask. In the BTTC scheme of Distasi et al. [8], linear in-
terpolation within each traingle is used. In the sequel we will denote this technique by
BTTC-L.

Since we have already seen that EED performs favourably as a scattered data in-
terpolant, it is natural to renounce the linear interpolation step in the BTTC-L method
and apply EED to the interpolation mask that has been created by the BTTC method.
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We abbreviate this novel method by BTTC-EED. Note that in contrast to BTTC-L,
BTTC-EED does not rely on the triangulation, only on its vertices as interpolation
points.

4 Experiments on Compression

Let us now investigate the effects of our EED-based interpolation in the context of
image coding. Figures 2 and 3 show two test images and their compressed versions
using BTTC-EED, respectively. We have chosen the threshold parameter ε such that
compressions of 0.8, 0.4 and 0.2 bits per pixel (bpp) are achieved. Since the usual
coding uses 1 byte per pixel, this comes down to compression ratios of 1:10, 1:20 and
1:40. In Fig. 3, we display both the coded pixels with their corresponding grey values,
and the result after scattered data interpolation with EED. We observe that even at high
compression rates, fairly realistic results are possible.

Fig. 2. Test images, 257 × 257 pixels. (a) Left: trui. (b) Right: peppers.

In order to illustrate the differences between BTTC-EED and BTTC-L as well as
JPEG, we depict the corresponding results in Fig. 4. We perform this comparison at the
high compression rate of 1:40 (or equivalently 0.2 bpp) where the visual differences
are well visible. We observe that JPEG coding suffers from severe block artifacts that
result from the fact that the discrete cosine transform is computed within blocks of 8×8
pixels. The BTTC-L method, on the other hand, creates artifacts where the underlying
triangulation becomes visible. Since BTTC-EED only uses the interpolation points from
the BTTC method, but not the corresponding triangulation, it is clear that this method
cannot suffer from such a shortcoming. If not enough data are available, its interpolation
tends to be on the smoother side. It gives the visually most convincing results among
the three methods.

This visual impression is also confirmed by the quantitative measurements in Ta-
ble 2, where the average absolute error is listed. We see that at the compression rate
1:40, JPEG performs worst, BTTC-L is in the midfield, and BTTC-EED gives the best
results.
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Fig. 3. First row, left to right: Adaptive sparsification of trui, using BTTC with compression
to 0.8 bpp, 0.4 bpp, 0.2 bpp. Second row, left to right: Corresponding EED-based interpolation.
Third row, left to right: Adaptive sparsification of peppers, using BTTC with compression to
0.8 bpp, 0.4 bpp, 0.2 bpp. Fourth row, left to right: Corresponding EED-based interpolation.
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Fig. 4. Comparison at high compression rates (0.2 bpp) for the test images trui and peppers. Left
column: JPEG. Middle column: BTTC-L. Right column: BTTC-EED.

Table 2. Comparison of the average absolute error for the different images and compression
methods at 0.2 bpp

compression trui peppers
JPEG 11.25 12.99
BTTC-L 8.63 11.22
BTTC-EED 8.45 9.99

5 Conclusions

In this paper we presented a proof-of-concept that edge-enhancing anisotropic diffu-
sion (EED), a PDE originally designed for denoising, can also be useful for scattered
data approximation and for image compression. In the latter case we sparsified the im-
age data by B-tree triangular coding, and used EED as a scattered data interpolant for
decoding. Our experiments indicate that this strategy is particularly useful when high
compression rates become necessary.

Since modern image compression methods have reached a high degree of sophis-
tication, it is evident that our paper can only serve as a first step towards PDE-based
image compression. In our ongoing work we are investigating different options for fur-
ther performance improvements and a more detailed performance evaluation including
also upcoming standards such as JPEG 2000.
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Abstract. We propose a variational approach for deblurring and impul-
sive noise removal in multi-channel images. A robust data fidelity mea-
sure and edge preserving regularization are employed. We consider sev-
eral regularization approaches, such as Beltrami flow, Mumford-Shah and
Total-Variation Mumford-Shah. The latter two methods are extended to
multi-channel images and reformulated using the Γ -convergence approx-
imation. Our main contribution is in the unification of image deblurring
and impulse noise removal in a multi-channel variational framework. The-
oretical and experimental results show that the Mumford-Shah and To-
tal Variation Mumford Shah regularization methods are superior to other
color image restoration regularizers. In addition, these two methods yield
a denoised edge map of the image.

1 Introduction

Image deblurring and denoising are classical problems that have been exten-
sively studied. Consider the standard linear and space invariant blur model with
additive noise. Let z denote the blurred and noisy image, h the blur kernel, u
the original image and n the noise. Thus, z = h ∗ u + n. In the multi-channel
case,

zσ = hσ ∗ uσ + nσ,

where σ indicates the channel. In the processing of standard color images, σ ∈
{r, g, b}. We assume that hσ = h for all σ. This approximation holds for cameras
with lenses of reasonable quality.

Consider first the single-channel case. A variational approach to the recovery
of u from z (given h) is based on the minimization of a cost functional that
includes fidelity and regularization terms. The fidelity term quantifies the dis-
crepancy between the observed image z and the blurred version h ∗ u of the
recovered image. The regularization term is necessary since the image deconvo-
lution problem is ill-posed.

The fidelity terms in variational image deblurring methods are commonly
designed for Gaussian noise and are thus based on the L2 norm∫

(h ∗ u− z)2 dA .

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 49–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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To better deal with outliers and impulsive noise in image deconvolution, fidelity
measurement using the L1 norm∫

|h ∗ u− z| dA

can be considered. In practice, the modified L1 norm∫ √
(h ∗ u− z)2 + η dA

is an approximation that offers numerical advantages (0 < η 	 1).
Regularization in variational image deblurring can be accomplished using

various stabilizers, such as Tikhonov (L2) [1], Total Variation (L1) [2,3,4] and
φ-formalism [5,6]. Recently, elements of the Mumford-Shah functional have been
used for regularization in the image deblurring problem [7].

Deblurring of color images in the variational framework has received surpris-
ingly little attention. Blomgren and Chan [8] extended the Total Variation norm
to vector-valued images in the context of image denoising. Barash [9] restored
color images by combining an L2 fidelity term with Perona-Malik regulariza-
tion [10], but processed each channel separately. Two recent studies on color
image deblurring were presented by Welk et al [6] and Kaftory et al [11]. The
former study used L2 fidelity term and a coupled multi-channel extension of the
Perona-Malik regularizer. The latter presented a color image deblurring method
employing an L2 fidelity term and Beltrami flow regularization. Other than in
the variational framework, multispectral Wiener-based restoration was suggested
in [12]; see also [13,14].

This research concentrates on the deblurring of multi-channel images conta-
minated by impulsive noise. Addressing the problem in the variational setting,
we extend the L1 fidelity measure to multi-channel images. We study several
regularization terms, and propose the generalization of two efficient stabilizers
to the multi-channel case. The novel cost functionals, algorithms and theoretical
discussions are supported by comparative experiments. Successful color image
deblurring at high levels of impulse noise is demonstrated.

2 Cost Functionals

Image deblurring is an ill-posed inverse problem, that has to be regularized.
In the variational framework, the recovered image is the minimizer of a cost
functional. In the multi-channel case, the functional is of the general form

F =
∫

Ω

∑
σ

Φ(h ∗ uσ − zσ) dA + J (u),

where Φ(·) is a potential function and J (u) is a regularization operator that
depends on all the channels. Ω is the image domain and u : Ω → [0, 1]3. In the
case of Gaussian noise, a quadratic form of the data-fidelity is appropriate,

Φ(h ∗ uσ − zσ) = (h ∗ uσ − zσ)2.
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The quadratic form is inadequate for impulsive noise. To effectively suppress
outliers, a (modified) robust L1 norm can be used [4,3,15]:

Φ(h ∗ uσ − zσ) =
√

(h ∗ uσ − zσ)2 + η,

where η 	 1 is a positive constant.
This study focuses on color image deblurring with impulsive noise. We there-

fore base the fidelity term, in all the methods we consider, on the multi-channel
modified L1 norm. The methods differ in the regularization used; we present and
discuss several possibilities, and evaluate their resulting restoration performance.

Total Variation (TV) regularization, first introduced by Rudin et al [2], has
been widely used in image processing. A straightforward but naive extension to
color images is via channel-by-channel TV regularization. For each channel,

J TV (uσ) = β

∫
Ω

|∇uσ| dA.

Channel-by-channel image deblurring, with multiple decoupled functionals, is
simple but may lead to artifacts. Specifically, since the channels are decou-
pled, color edges in different channels may not coincide, resulting in thin false
stripes [16]. Channel coupling in TV regularization (Color-TV) was presented
by Blomgren and Chan [8].

An alternative approach is the Beltrami flow introduced by Sochen et
al [17]. Its superiority with respect to Color-TV regularization has been shown
by Tschumperle [18]. In the Beltrami framework, a color image (ur, ug, ub)
is regarded as a two-dimensional surface embedded in R5-space spanned by
(x, y, ur, ug, ub). The area of this surface is given by∫

Ω

√
detG dA,

where the metric G takes the form

G =
(

1 + γ2 ∑
σ (uσ

x)2 γ2 ∑
σ uσ

xu
σ
y

γ2 ∑
σ uσ

xu
σ
y 1 + γ2 ∑

σ (uσ
y )2

)
.

This area is a measure of image smoothness, and has the important advantage
of gradient alignment between channels. The Beltrami functional is given by

J BEL = α

∫
Ω

√
det(G) dA.

The advantages of this regularizer are more obvious if we rewrite it as∫
Ω

√
1 + γ2

∑
σ

(|∇uσ|2) +
1
2
γ4

∑
σ1,σ2

|∇uσ1 ×∇uσ2 |2dA,

where × denotes cross-product. The cross-product term enforces channel align-
ment, making the gradients (uσ

x , u
σ
y ), σ ∈ {r, g, b} parallel to each other, and
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producing crisp color edges [19]. In the late stages of minimization, when the
cross-product term is nearly zero, JBEL approaches the robust Total Variation
norm.

Reflecting the preference for piecewise smooth images, parts of the Mumford-
Shah segmentation functional [20] can be used for regularization in image restora-
tion as well [7]. In this stabilizer, the energy assigned to a gray level image
u : Ω → [0, 1] with an edge set K ⊂ Ω is

JMS(u,K) = β

∫
Ω\K

|∇u|2dA + α

∫
K

dH1.

The first term forces the smoothness of u everywhere except on the discontinu-
ity set K. The second term minimizes the one-dimensional Hausdorff measure
(length) of the discontinuity set. Using the Γ -convergence framework, Ambro-
sio and Tortorelli [21] approximated this irregular functional by a sequence of
regular functionals

JMS
ε (u, v) = β

∫
Ω

v2|∇u|2 dA + α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dA . (1)

The auxiliary function v(x) represents the edges. The minimizers of JMS
ε ap-

proach the minimizer of JMS as ε → 0. In the color version of this functional,
suggested by Brook et al [16],

|∇u| =
√∑

σ

[
(uσ

x)2 + (uσ
y )2

]
. (2)

This term is referred to as the Frobenius norm of∇u. Note that in this regularizer
the edge map v is common for the three channels.

A modified version of the Mumford-Shah functional, in its Γ -convergence
approximation, was suggested by Shah [22] for gray-level images:

JMSTV
ε (u, v) = β

∫
Ω

v2|∇u| dA + α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dA. (3)

In this version the L2 norm of ∇u was replaced by the L1 norm in the first term.
Alicandro et al [23] proved the Γ -convergence of this functional to

JMSTV = β

∫
Ω\K

|∇u| dA + α

∫
K

|u+ − u−|
1 + |u+ − u−|dH

1 + |Dcu|(Ω),

where u+ and u− denote the image values on two sides of the edge set K, H1

is the one-dimensional Hausdorff measure and Dcu is the Cantor part of the
distributional derivative Du. This functional was generalized by Brook et al [16]
for color images where the Frobenius norm (2) was used in this case as well.

In this research, we consider color image deblurring functionals with a multi-
channel L1 fidelity term, and one of the regularization terms J BEL, JMS , and
JMSTV . As a baseline, the channel-by-channel J TV term will also be discussed.
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3 Minimization

Minimization of the cost functionals is carried out using the Euler-Lagrange
(E-L) equations with homogeneous Neumann boundary conditions ∂uσ/∂N = 0,
∂v/∂N = 0, where N is the normal to the image boundary. We present the E-L
equations of the four functionals that we consider. For channel-by-channel TV
regularization, the E-L equation is

δFTV

δuσ
=

h ∗ uσ − zσ√
(h ∗ uσ − zσ)2 + η

∗ h(−x,−y)− 2β ∇ ·
(
∇uσ

|∇uσ|

)
= 0 (4)

The Beltrami E-L equation takes the form

δFBEL

δuσ
=

h ∗ uσ − zσ√
(h ∗ uσ − zσ)2 + η

∗ h(−x,−y)−α∇·
(√

det(G)G−1∇uσ
)
=0 (5)

The parameter α can be made adaptive [24]. Here, α is replaced by α/
√

det(G) in
order to convert the regularizer to the Laplace-Beltrami geometric operator [11].

The objective functionals with the MS and MSTV regularization terms (1,3)
depend on the recovered image u and on the edge map v. With MS regulariza-
tion (1), the E-L equations are

δFMS
ε

δuσ
=

h ∗ uσ − zσ√
(h ∗ uσ − zσ)2 + η

∗ h(−x,−y)− 2β∇ · (v2∇uσ) = 0 (6)

δFMS
ε

δv
= 2βv|∇u|2 + α

(
v − 1
2ε

)
− 2ε α∇2v = 0 (7)

For MSTV regularization (3), the L1 norm |∇u| is replaced by the modified L1

norm
√

γ + |∇u|2. Thus,

δFMSTV
ε

δuσ
=

h ∗ uσ − zσ√
(h ∗ uσ − zσ)2 + η

∗ h(−x,−y)− 2β∇·
(

v2∇uσ√
γ + |∇u|2

)
= 0(8)

δFMSTV
ε

δv
= 2βv

√
γ + |∇u|2 + α

(
v − 1
2ε

)
− 2ε α∇2v = 0 (9)

It can be easily seen that Eqs. (4,5,6,8) are non-linear integro-differential
equations. Following Vogel and Oman [25], linearization of the E-L equations for
the color channels u is performed using the fixed point iteration scheme, where
their denominators are lagged by one iteration with respect to the numerators.
The linearized functions are then solved by the conjugate gradients method.
Eqs. (7,9) are linear with respect to v and are solved using the Minimal Residual
algorithm. Note that with MS and MSTV regularization, there are four equations
to solve. The minimization procedure alternates between uσ, σ ∈ {r, g, b} and v
until convergence.

The discretization of |∇u| in Eqs. (7) and (9) was carried out using the central
difference scheme. Terms of the form∇ · (C ∇uσ) and∇2v were discretized using
forward difference for the gradient and backward difference for the divergence.
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4 Robust Statistics Interpretation

In this section we provide a robust-statistics interpretation of the MS (1) and
MSTV (3) regularizers. Consider half-quadratic regularization [26]. In this ap-
proach, the regularizer is a non-decreasing potential function ρ(t), where in the
context of image restoration t = |∇u|. A central element in half-quadratic regu-
larization is the representation of ρ as an infimum of a quadratic function with
an auxiliary variable b. Explicitly, if ρ(

√
t) is concave and non-decreasing, we

can write
ρ(t) = inf

b
(bt2 + Ψ(b))

such that Ψ(b) is convex and decreasing. This representation is quadratic with
respect to t when b is fixed, and therefore leads to easier optimization. In the
case of edge-preserving image restoration, the auxiliary function b represents the
edges. For example, the Geman and McClure [27] potential function corresponds
to the half-quadratic form

|∇u|2
1 + |∇u|2/δ = b|∇u|2 + δ(

√
b− 1)2,

where δ is a positive constant. Teboul et al [28] noticed that in the presence of
noise, image restoration requires well-behaved edges. Therefore an edge regular-
ization term φb(b) was added:

J = λ1

∫
Ω

[
b|∇u|2 + Ψ(b)

]
dA + λ2

∫
Ω

φb(b)dA.

In the case that Ψ(b) = δ(
√

b− 1)2 and φb = |∇(
√

b)|2,

J = λ1

∫
Ω

[
b|∇u|2 + δ(

√
b− 1)2

]
dA + λ2

∫
Ω

∣∣∣∇(
√

b)
∣∣∣2 dA . (10)

Substituting b = v2, λ1 = β, δ = α/4εβ and λ2 = αε yields equivalence between
Eq. (10) and the MS regularizer (1) in its Γ -convergence approximation. This
regularizer is therefore the robust Geman-McClure ρ function with an additional
spatial edge organization constraint, where

ρMS =
|∇u|2

1 + |∇u|2/δ . (11)

In the same manner, the robust ρ function that corresponds to the MSTV reg-
ularizer (3) with the modified L1 norm is (δ = α/4εβ)

ρMSTV =

√
γ + |∇u|2

1 +
√

γ + |∇u|2/δ
, (12)

with δ = α/4εβ.
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Fig. 1. Color image deblurring in the presence of impulsive noise, using a multi-channel
modified L1 fidelity term, with four different regularization methods. Top-left: Blurred
image. Top-middle: Blurred image contaminated by 10% salt and pepper noise. Top-
right: Deblurring with channel-by-channel TV regularization. Bottom-left: Beltrami
flow. Bottom-middle: Color Mumford-Shah (MS). Bottom-right: Color TV Mumford-
Shah (MSTV).

5 Results

The original 256× 256 Lena image (not shown) was blurred by a pill-box kernel
of radius 3 (7×7 kernel), see Fig. 1 top-left. Each color channel was then contam-
inated by salt-and-pepper noise of 10% density (top-middle). Image restoration
results, with a fidelity term based on the color version of the modified L1 norm
and the various regularization terms are compared in Fig. 1. The modified L1

norm parameter was set to η = 10−4 in all experiments. The top-right image is
the outcome of the channel-by-channel TV regularization (Eq. 4) with β = 0.1.
Recovery with the Beltrami stabilizer (Eq. 5) is shown bottom left. In this case,
the parameters were set to α = 0.8 and γ = 0.1. The images recovered using the
MS (Eqs. 6 and 7) and MSTV (Eqs. 8 and 9) regularizers are shown bottom-
middle and right respectively. For both methods α = 0.5 and ε = 0.1, while
β = 0.7 for MS and β = 0.5 for MSTV.

As can be observed, channel-by-channel TV regularization is inferior with
respect to the other three methods. This is not surprising, since channel-by-
channel TV regularization does not exploit the inter-channel redundancy. The
images recovered using the Beltrami, MS and MSTV stabilizers are of high
quality, and are quite similar to each other at this moderate noise level. Table 1
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Table 1. PSNR values using several regularization methods

Image 10% noise [dB] 30% noise [dB]
Observed 14.96 10.35
TV 21.14 14.8
Beltrami 23.57 21.93
MS 23.87 23.28
MSTV 23.76 23.42

(the 10% noise column) provides quantitative comparative evaluation of these
deblurring results using PSNR values:

PSNR(I) = 20 log

√
3MN∑

σ

∑
i,j(I

σ
ij − Îσ

ij)2
.

Here M and N are the image dimensions, I and Î are the original and recovered
images respectively.

The differences between the Beltrami, MS and MSTV regularizers can be
better observed at a higher noise level, see Fig. 2. The blurred Lena image, with
30% noise is shown top-left. Shown top-right is the outcome of Beltrami flow
regularization with α = 1.2 and γ = 0.1. The images recovered using the MS
and MSTV stabilizers are shown bottom-left and bottom-right respectively. In
these cases the parameters were α = 0.5 and ε = 0.1, with β = 2.2 for MS and
β = 1.5 for MSTV.

The images recovered with MS and MSTV regularization are quite simi-
lar and visibly cleaner than the image obtained using the Beltrami flow stabi-
lizer. Fig. 3 shows magnifications of the images obtained with Beltrami (left)
and MSTV (right) regularization. The quantitative PSNR results are shown
in the right column of Table 1, and are compatible with the perceived visual
quality.

The superiority of the MS and MSTV regularizers with respect to the Bel-
trami flow in dealing with impulse noise can be well understood via the robust
statistics interpretation presented in section 4. While all three stabilizers sup-
port inter-channel coupling, only the MS and MSTV methods impose an edge
organization constraint. Edge organization is at the heart of the difference be-
tween an impulse noise point and a point that is part of a structured image
edge.

The robust statistics perspective can be also used to compare the MS and
MSTV regularizers. Fig. 4 presents the robust functions corresponding to the
MS regularizer (solid, red) and the MSTV stabilizer at two values of γ. The
dotted (green) curve corresponds to γ = 0.1 that we used in our experiments,
and the dashed (blue) curve is for γ = 10−10. The solid and dotted curves nearly
coincide near the origin, but elsewhere the MSTV curve is lower than the solid
curve. This implies better edge preservation with the MSTV regularizer. As γ is
decreased, the MSTV robust function becomes narrower, driving the recovered
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Fig. 2. Color image restoration using several regularization methods. Top-left: Blurred
image with 30% impulse noise. Top-right: Beltrami flow regularization. Bottom-left:
Color Mumford-Shah (MS). Bottom-right: Color TV Mumford-Shah (MSTV).

image towards the cartoon (piecewise constant) limit. Additional insight about
the importance of color-channel coupling in image restoration can be gained by
comparing restoration using multi-channel MS regularization with channel-by-
channel MS restoration, i.e., by applying the method of [15] to each channel
separately. As seen in Fig. 5, the multi-channel approach yields excellent results
even at a high (40%) level of impulse noise (left), where channel-by-channel
processing is clearly inadequate.

Finally, a useful byproduct of the MS and MSTV regularization methods is
the auxiliary function v, that can serve as an edge map. Fig 6 (left) is a blurred
and noisy Lena image; Fig 6 (right) is the v function (edge map) obtained with
the MS regularizer.

6 Conclusion

We presented variational methods for color image deblurring with impulse noise.
The methods share an L1 color fidelity term, but differ in the regularization
used. Our results verify the importance of channel coupling in the regulariza-
tion terms. Furthermore, with impulsive noise, regularization methods based on
the Mumford-Shah functional and its variants are superior to other methods,
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Fig. 3. Magnification of the images shown in the right column of Fig. 2. Left: Beltrami
flow regularization. Right: MSTV regularization.

Fig. 4. Robust functions. Red solid: ρMS. Blue dashed: ρMSTV with γ = 10−10. Green
dotted: ρMSTV with γ = 0.1.

Fig. 5. Multi-channel vs. chanel-by-channel deblurring at a high level of impulse
noise (40%). Left: Multi-channel MS regularization. Right: Channel-by-channel MS
processing.

including the Beltrami flow. This is seen in the experiments, and theoretically
explained from the robust statistics point of view. Promising deconvolution re-
sults are obtained even at high levels of impulsive noise.
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Fig. 6. Left: Blurred image contaminated by 30% impulsive noise. Right: Edge map
obtained as a by-product of restoration using MS regularization.
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18. Tschumperlé, D.: PDE’s based regularization of multivalued images and applica-
tions. PhD thesis, University of Nice–Sophia Antipolis (2002)

19. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal
surfaces: Movies, color, texture, and volumetric medical images. Int. J. Computer
Vision 39 (2000) 111–129

20. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions
and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–685

21. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps
by elliptic functionals via Γ -convergence. Comm. Pure Appl. Math. 43 (1990)
999–1036

22. Shah, J.: A common framework for curve evolution, segmentation and anisotropic
diffusion. In: IEEE Conference on Computer Vision and Pattern Recognition.
(1996) 136–142

23. Alicandro, R., Braides, A., Shah, J.: Free-discontinuity problems via functionals
involving the L1-norm of the gradient and their approximation. Interfaces and Free
Boundaries 1 (1999) 17–37

24. Strong, D., Chan, T.: Edge-preserving and scale dependent properties of total
variation regularization. CAM Report 00–38, UCLA Math department (2000)

25. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of
noisy, blurred images. IEEE Trans. Image Proc. 7 (1998) 813–824
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Abstract. PDE-based image inpainting efficiently recovers structured
features. We expand this to textures. We adjust the coordinates to proper
directions, and embed in anisotropy terms the brightness correlation be-
tween pixels adjoining on the new grid. A simple elliptic equation then
repairs both oriented textures and edges by one uniform, automated al-
gorithm. Extensive experimental results on a variety of standard natural
images show the technique’s generality and stability.

1 Introduction

This paper offers a new partial differential equation (PDE) repair for loss or
occlusion in digital images.

Broken edge repair is well solved by anisotropic PDE’s, beginning with the
third-order diffusion equation by Bertalmio et al. [1]; total variation (TV) mini-
mization by Chan and Shen [2]; and the level-line method by Masnou and Morel
[3]. Their novelty is that these PDE’s utilize the image gradient vector as an edge
detector, allowing the simultaneous inpainting of smoothness and sharp edges.

However, any edge detector is sensitive to textures. As a result, to use these
PDE’s for image inpainting, additional texture synthesis (e.g., Efros-Leung’s [4])
and feature discrimination are required. For example, Ref. [5] pre-classifies the
lost blocks into edgy or textured type, and Ref. [6] extracts textures from struc-
tures. The results are satisfactory, but performance hinges on the efficiency of the
feature discrimination. Efros-Leung’s texture synthesis (a pixel-by-pixel match-
ing and replicating method) performs well but is known as time-consuming. Ac-
ton, Mukherjee, Havlicek and Bovik [7] propose an impressive reaction-diffusion
(RD) model for fingerprint completion, using a Gabor filter-based reaction term
for texture recreation. The literature also holds a number of PDE methods for
texture processing, such as the texture enhancement of Weickert and Scharr [8],
texture extraction of Vese and Osher [9], and texture generation of Witkin and
Kass [10]. Nevertheless, PDE inpainting has been limited to non-texture regions.

In this paper, a simple anisotropic elliptic PDE discretized along proper direc-
tions, with brightness correlation embedded in its anisotropy terms, repairs broken

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 61–72, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. An example of our image repair. Left: the 512×512 image with a decoding
failure caused by a bit error in one ERC-SPIHT coded bit stream (out of 16). Right:
the image recovered by our approach.

textures as well as edges. This recovers all content by a fully automated, uniform
algorithm, with no discriminative preprocess of classification or decomposition.

Traditionally, a continuous PDE model discretized along horizontal and ver-
tical axes estimates a missing pixel by low pass filtering its nearest neighbors.
We use a differently angled subgrid. A pixel in an oriented feature differs signif-
icantly from its next neighbors, but with near-shared values typically displaced
by a repetition vector, depending on either the direction or the repetitiveness
of a feature (two dimensions for texture perception [11]). More favorably, pix-
els on edges also conform to such repetition regularity. This observation led us
to compute the repetition vector with a simple optical flow algorithm from the
computer vision literature, building our model on this direction and its normal.

The PDE’s anisotropy term is another crucial factor. In our new coordi-
nate grid, a lost pixel and its repetition vector direction neighbors have similar
intensity; normal to the direction, values tend to change gradually. We treat
separately the terms for anisotropy along each axis, consequently, the coefficient
field of our model takes the form of a diagonal matrix. As we estimate their
values from the valid pixels, our model is an elliptic PDE rather than a diffusion
equation. This saves the computational cost on updating the diffusion coefficients
in each diffusion step, and gives more accurate modelling of brightness contrast.

2 New PDE Recovery Approach

2.1 Repetition Vector

Image recovery infers a lost region from regularity in ambient valid regions: here
regularity in repetitiveness of oriented features, either edges or textures. Denote
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Fig. 2. (a) an example lost block and the reference blocks used for RV search, (b) the
one-pixel-wide strip for RV selection. Circles stand for lost pixels, stars for valid ones.

the original value at pixel (i, j) by I(i, j), the N ×N block of missing pixels by
B, surrounded by a set S of valid pixels. An integer vector ρ = (ρx, ρy) ∈ Z2 is
a repetition vector (RV) of B̄ = B ∪ S, if for any (i, j) ∈ B̄,

I (i, j) ≈ I (i + ρx, j + ρy) , (1)

where we interpret ”≈” below. The symmetry of, e.g., a chessboard may give
multiple RVs, but commonly (up to sign) a unique ρ best satisfies (1). For edges,
ρ is fixed by edge direction or isophotes; for textures, ρ depends on the direction
or repetitiveness. Evidently, we must seek the ρ for B̄ in S. We narrow the range
to R, the union of the eight N/2×N/2 references blocks that abut B (Fig. 2(a)).
Finding ρ is analogous to finding optical flow in an image sequence: both essen-
tially matching problems. We borrow from the computer vision literature the
classical optical flow searching method of corner extraction and matching [12].

We extract from each reference block as corners the pixels with intensities
near local maximum and minimum, if the maximum and minimum differ larger
than a threshold (e.g., 30 apart in 8-bit monochrome images); and sequentially
match these corners. Specifically, for two corners (i1, j1), (i2, j2) in R with values
I(i, j) close (e.g., less than 10 apart), fix a matching 3 × 3 window centered at
each, and a set V of valid neighbors V = {(k, h) ∈ [−1, 1]× [−1, 1]|(i1 + k, j1 +
h), (i2 + k, j2 + h) ∈ S}. (i2 − i1, j2 − j1) is determined to be a candidate for ρ,
if the mean absolute difference (MAD)

MAD =
1
|V | {

∑
(k,h)∈V

|I(i1 + k, j1 + h)− I(i2 + k, j2 + h)|}.

is below a threshold (e.g., 15). From all candidates, one of two tests (AAD or
SSE) picks as optimal RV the vector that minimizes its cost function on the
surrounding one-pixel-wide strip τ of neighbors (Fig. 2(b)).

Average of Absolute Difference (AAD) Selection : For a candidate c =
(cx, cy), an arbitrary pixel (u, v) in τ has two correspondents (u+ cx, v+ cy) and
(u−cx, v−cy) with respect to c. As (u, v) is at the boundary of a reference block,
if |cx| and |cy| are not so large as to reach the next missing region, one corre-
spondent (u′, v′) has a correctly decoded value. Select as ρ the c that minimizes
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ρ = arg min
(cx,cy)

1
|τ |

∑
(u,v)∈τ

abs(I(u, v)− I(u′, v′)).

Sum of Squared Error (SSE) Selection : For each candidate RV, test on
τ the recovery algorithm (13) that will be introduced in Section 2.3, which at
each pixel (u, v) ∈ τ gives the recovered value I∗cx,cy

(u, v). Select as ρ the c that
minimizes

ρ = arg min
(cx,cy)

∑
(u,v)∈τ

(I(u, v)− I∗cx,cy
(u, v))2.

We compare these methods in Section 3. It is possible that the search finds no
match, for instance, if the missing region and its neighborhood are in a smooth
area, then no corner is extracted. In this case, we assign [0, 1] as the RV. Later
we will find, our system based on ρ = [0, 1] degenerates to the traditional one.

Normal to the RV ρ = ±(ρx, ρy) are ρ⊥ = ±(−ρy, ρx), two vectors of the
same size. From these four vectors,

−→
Vζ = (n,m) with m,n ≥ 0 and its normal

−→
Vη = (−m,n) in the second quadrant are our unit vectors for ζ and η axes
respectively, giving the frame for our PDE model. Fig. 3(a) shows a lost block in
the standard image Barbara, for which the output ρ of the RV search algorithm
is (-3,-2). Fig. 3(b) illustrates the oriented basis formed by

−→
Vζ = (3, 2) and

−→
Vη = (−2, 3).

The new coordinate differs fundamentally from the Gauge coordinate, al-
though both are dictated by the feature orientation. The Gauge coordinate di-
rections ω = ∇I/‖∇I‖ and ϑ = ω⊥, the maximum intensity change direction
and its normal, still depend on the estimation of horizontal and vertical partial
differentials ∂I/∂x and ∂I/∂y. As the oriented texture pixel is singular either
horizontally or vertically—that is why texture can be perceived —a traditional
estimation of ∂I/∂x and ∂I/∂y by the forward (backward) differences could be
problematic. In our system, the integer repetition vector

−→
Vζ is found as in opti-

cal flow searching. The role of ±−→Vζ is to point out directly the pixels that are
supposed to have the similar intensity value, without estimating the derivative
(or difference) along any direction.

2.2 Oriented Anisotropic Brightness Equation

The PDE’s anisotropy terms control the brightness contrast of adjacent pix-
els. They are classified into three categories [14], which we illustrate with the
following examples.

– ∂I/∂t = div(g(‖∇I‖)∇I) (e.g, [2], [7], [13]). The coefficient field g() is a
scalar decreasing function of ‖∇I‖.

– ∂I/∂t = div(D ·∇I) (e.g., [8]). The diffusion tensor matrix D is symmetric.
The three entries of D is determined by the structure tensor matrix.

– ∂I/∂t = A·H (e.g., [10]). H is the Hessian matrix, and A is a 2×2 symmetric
matrix determined by the principle direction.
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Our elliptic equation model, the oriented anisotropic brightness equation
(OABE), is in-between, with the anisotropy terms p(ζ, η) = 1/|∂I

∂ζ |, q(ζ, η) =
1/| ∂I

∂η |, {
∂
∂ζ (p(ζ, η)∂I

∂ζ ) + ∂
∂η (q(ζ, η) ∂I

∂η ) = 0 (ζ, η) ∈ B,

I(ζ, η) = I0(ζ, η) (ζ, η) ∈ S.
(2)

where I0 indicates the values of valid pixels.
A conservative 5-point differencing scheme for (2) at pixel (i, j),

0 = p((i, j)− Vζ/2)(I((i, j)− Vζ)− I(i, j))
+p((i, j) + Vζ/2)(I((i, j) + Vζ)− I(i, j))
+q((i, j)− Vη/2)(I((i, j)− Vη)− I(i, j))
+q((i, j) + Vη/2)(I((i, j) + Vη)− I(i, j)). (3)

gives our estimation scheme. With the lost block of Fig. 3(a) as an example, Fig.
3(c) shows the pixels used to estimate the value at bottom-left, I(240, 393), the
true value of which is 167. Apparently, its valid neighbors in the new coordinate
grid (with values 169, 175, and 174) are more suitable for the recovery than its
horizontal and vertical neighbors (152 and 209).

Previous diffusion inpainting generally updates the anisotropy terms during
the iteration process, using the intensity values generated in the previous iter-
ation step. We estimate the terms from the valid pixels directly, which saves
the computational cost of parameter fitting in each iteration step. Moreover, the
brightness contrast is modelled more accurately from the valid pixels. We first
derive the restricted p((u, v)± Vζ/2)|S from the known I(u, v)|S. At (u, v) ∈ S,
replace partials by central differences:

p((u, v)± Vζ/2) =
1

|I((u, v)± Vζ)− I(u, v)| . (4)

replacing by 1 any zero denominator(s). Next we linearly interpolate p((i, j) ±
Vζ/2)|B from p((i, j)± Vζ/2 + kηVη) and p((i, j)± Vζ/2− k−ηVη), where

k−η = min{k > 0|{((i, j)± Vζ − kVη), ((i, j)− kVη))} ⊂ S}
kη = min{k > 0|{((i, j)± Vζ + kVη), ((i, j) + kVη))} ⊂ S},

by

p((i, j)± Vζ/2) =
k−η

kη + k−η
p((i, j)± Vζ/2 + kηVη)

kη

kη + k−η
p((i, j)± Vζ/2− k−ηVη). (5)

similarly for q(), with exchange of Vζ and Vη. Fig. 4 illustrates (5) for the bottom-
left pixel of the lost block in Fig. 3, where kη = 3 and k−η = 1.
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Fig. 3. (a) an example of an 8×8 lost block, (b) its new basis vectors fixed by the RV
search algorithms, (c) pixels (in circles) set by the new basis, estimate the bottom-left
corner (black dot) of the lost block

2.3 Solution of the OABE

With p((i, j) ± Vζ/2)|B, q((i, j) ± Vη/2)|B given by (5), we solve the OABE.
Vectorize the lost block entries I(i, j)|B in raster order:

X = (x1, x2, · · · , xN×N )
= (I(i0, j0), I(i0, j0 + 1), · · · , I(i0 + N − 1, j0 + N − 1)),

where (i0, j0) is the upper-left pixel of the lost block B. Clearly, if I(i, j) corre-
sponds to the lth entry xl of X , then I((i, j)±Vζ) and I((i, j)±Vη) correspond
to xl±nN±m and xl∓mN±n. Thus (3) can be written as

0 = [p((i, j)− Vζ/2) + p((i, j) + Vζ/2) + q((i, j)− Vη/2) + q((i, j) + Vη/2)]xl

−p((i, j)− Vζ/2)xl−nN−m − p((i, j) + Vζ/2)xl+nN+m

−q((i, j)− Vη/2)xl+mN−n − q((i, j) + Vη/2)xl−mN+n. (6)

Setting

T (i, j) = p((i, j)− Vζ/2) + p((i, j) + Vζ/2)
+q((i, j)− Vη/2) + q((i, j) + Vη/2) (7)

ωl,l−nN−m =
p((i, j)− Vζ/2)

T (i, j)
ωl,l+nN+m =

p((i, j) + Vζ/2)
T (i, j)

ωl,l+mN−n =
q((i, j)− Vη/2)

T (i, j)
ωl,l−mN+n =

q((i, j) + Vη/2)
T (i, j)

(8)

we have

xl − ωl,l−nN−mxl−nN−m − ωl,l+nN+mxl+nN+m

− ωl,l+mN−nxl+mN−n − ωl,l−mN+nxl−mN+n = fl = 0. (9)
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Fig. 4. A graphical illustration on interpolation equation (5), through the example of
the bottom-left pixel in the lost block shown in Fig. 3

If any term among xl±nN±m and xl±mN∓n is in S, shift it to the right of (9)
and add to fl. Eqs. (9) for each l ∈ [1, N2] form

WXT = f, (10)

a linear system with diagonal 1s, and lth row of W

(−ωl,1,−ωl,2, · · · ,−ωl,l−1, 1,−ωl,l+1, · · · ,−ωl,N×N),

has at most five nonzero entries. Furthermore, equality (8) gives∑
h∈[1,N2]\{l}

| − ωl,h| ≤ ωl,l = 1. (11)

In practice, the non-0 and non-1 entries have finite precision. Discard the least
significant digit of each, and the inequality∑

h∈[1,N2]\{l}
| − ωl,h| < ωl,l (12)

always holds: the matrix W is strictly diagonally dominant. This property implies
the following theorem regarding the solution of (10).

1. W is non-singular. See Strang [15] (pp. 289-290) for a concise proof. Thus
the solution of (10) exists and is unique.
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2. The Guass-Seidel iteration over k,

xk+1
l =

l−1∑
h=1

ωl,hx
(k+1)
h +

N2∑
h=l+1

ωl,hx
(k)
h + fl, (13)

converges to the theoretical solution [16] (pp. 230-233).
3. The solution I∗(i, j)|(i,j)∈B satisfies

I∗(i, j) ≥ 0 (i, j) ∈ B max
(i,j)∈B

I∗(i, j) ≤ max
(u,v)∈S

I(u, v).

This property can be verified straightforwardly, and guarantees a regenerated
value in the reasonable range; e.g., in 8-bit monochrome, it ensures values
in [0,255].

3 Experimental Results

We evaluate this on standard 512×512, 8-bit monochrome raw images, with
different loss patterns. In real-world use, with no access to original source images,
the primary reconstruction evaluation criterion is visual quality: repaired defects
should be as imperceptible as possible. To quantify generality and robustness of
the OABE on different images, we follow tradition in previous work and compute,
over the recreated pixels (since clean pixels are untouched during reconstruction),
the mean square error (MSE) through peak-signal-to-noise ratio (PSNR)

PSNR = 10 log
2552
MSE
10 . (14)

with

MSE =
1

|B| ·N2

∑
B∈B

∑
(i,j)∈B

(I0(i, j)− I∗(i, j))2,

where B is a lost-recovered block of size N ×N , B is the collection of all these
blocks, and I0, I∗ indicate the true and recovered values respectively. It should
be of note that some publications (e.g., [17]) compute the MSE over the entire
image, which is higher than (14) by a constant set by the loss rate, given the
same sum of squared errors. When comparing the OABE with previous methods,
we shall specify the PSNR’s by both schemes.

We first test the OABE on images coded by Error Resilient and Concealment-
Set Partitioning in Hierarchical Trees (ERC-SPIHT), currently one of the most
prevalent video coders. On the test images, we simulated 3-level, Haar-wavelet-
based ERC-SPIHT, and the 16-codestream structure used in [18]. An early bit
error in one bitstream over the binary symmetric channel incurs regular blank
8×8 squares. To see OABE’s behavior in finest detail, assume the other 15 bit-
streams are fully transmitted and decoded. Our setup is identical for every image.
In solving the OABE, the bound on iterations in (13) is set to 200. On using
SSE selection, the iteration bound is 80.
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OABE performance is strongly influenced by RV choice. The ground-truth
RV gives high PSNR and invisible concealment artifacts. In our study, after
corner extraction and matching, it is generally in the candidate list, but on a
few blocks the optimizer might select other candidates. On image Barbara, SSE is
both objectively and subjectively superior to AAD; Fig. 1 shows its result, with
a PSNR of 27.33dB. On the other test images, less textured than Barbara, SSE
and AAD yield parallel results, and both suffice for visual and numerical quality.
Moreover, AAD selection is faster. Fig. 5 shows the results by AAD selection.

We also test the OABE on recovering 16×16 blocks with high oscillation
patterns from Barbara. Fig. 6 provides the zoom-in views of the recovery with
AAD selection, good both visually and by PSNR measurement.

Finally, we compare the OABE with an up-to-date block-loss concealment
method, RIBMAP (recovery of image blocks using the method of alternating
projection) of [17] (by Park et al., 2005). As in [17], we simulate on images
Masquerade and Lena the loss pattern with lost block size 8×8, and block loss
rate (BLR) 23.46%. With AAD selection, the OABE yields PSNR’s of 25.38dB
and 28.44dB respectively (Fig. 7). The PSNR comparison (Table 1) shows that
we have achieved 1.8dB improvement on the Masquerade image. This comparison
(with RIBMAP and the methods compared in [17]) shows the OABE superior
to previous methods on recovering images rich in textures, and the satisfactory
performance is maintained on structural images.

The OABE can be readily extended to recovering missing regions of gen-
eral shape. Given any finite set of missing points, with cleanly received pixels
surrounding the missing region, there is a discrete version of the equation that
can be satisfied uniquely. The OABE has its limitation, though. It is unable to
recover the missing regions that contain ”Y”-shape junctions.

Table 1. PSNR comparison (in dB) to the RIBMAP in [17]

BLR 23.46% Lena Masquerade
PSNR over

recovered blocks
PSNR over
entire image

PSNR over
recovered blocks

PSNR over en-
tire image

RIBMAP — 34.65 — 29.87
OABE 28.44 34.73 25.38 31.68

4 Conclusion

This paper presents a novel anisotropic elliptic PDE model. In contrast to the
previous methods that treat edge completion and texture synthesis mutually ex-
clusively, our approach repairs missing structures and textures by one uniformed,
fully automated algorithm. Both textures and edges exhibit repetitiveness, with
near-shared values typically displaced by the repetition vector (RV), which we
compute via a classical optical flow vector computation method. We construct
our anisotropic PDE model on the basis formed by the RV and its normal. We
have mathematically shown the existence and uniqueness of the solution for the
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Fig. 5. 512×512 standard test images. The left column: from top to bottom, original
images referred to as Lena, Couple, Goldhill and Boat. The middle column: received
corrupted images without error concealment, with a decoding failure in the 11th ERC-
SPIHT bitstream; The right column: the recovered images by the proposed OABE
model. From top to bottom, the PSNR results (in dB) are 28.44, 27.88, 26.93 and
25.82.

OABE, and presented the iteration scheme yielding the solution. Extensive ex-
periments verify the high fidelity of the OABE on both structures and textures.
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Fig. 6. Zoom-in view if the OABE recovery on lost blocks of size 16×16. The first line:
segments from the original Barbara image; The middle line: corruption with simulated
loss; The third line: the recovery results of the proposed OABE model. From left to
right, the PSNR scores (in dB) are 28.80, 27.61, 31.39, 30.50 and 30.87.

Fig. 7. The images Lena and Masquerade with simulated corruption at block loss rate
23.46%, and the images recovered by the OABE
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Abstract. This paper studies the model of minimizing total variation with an
L1-norm fidelity term for decomposing a real image into the sum of cartoon and
texture. This model is also analyzed and shown to be able to select features of an
image according to their scales.

1 Introduction

Let f be an observed image which contains texture and/or noise. Texture is charac-
terized as repeated and meaningful structure of small patterns. Noise is characterized
as uncorrelated random patterns. The rest of an image, which is called cartoon, con-
tains object hues and sharp edges (boundaries). Thus an image f can be decomposed as
f = u + v, where u represents image cartoon and v is texture and/or noise. A general
way to obtain this decomposition using the variational approach is to solve the problem
min {

∫
|Du| | ‖u−f‖B ≤ σ}, where Du denotes the generalized derivative of u and

‖ · ‖B is a norm (or semi-norm). The total variation of u, which is
∫
|Du|, is minimized

to regularize u while keep edges like object boundaries of f in u (i.e. allow discontinu-
ities in u). The fidelity term ‖t(u, f)‖B ≤ σ forces u to be close to f . Among the recent
total variation-based cartoon-texture decomposition models, Meyer [15] and Haddad &
Meyer [12] proposed to use the G-norm, Vese & Osher [23] approximated the G-norm
by the div(Lp)-norm, Osher & Sole & Vese [20] proposed to use the H−1-norm, Lieu
& Vese [14] proposed to use the more general H−s-norm, and Le & Vese [13] pro-
posed to use the div(BMO)-norm. In addition, Alliney [2,3,4], Nikolova [16,17,18],
and Chan & Esedoglu [8] used the L1-norm together with total variation. In this paper,
we study the TV-L1 model.

The rest of the paper is organized as follows. In Section 2 we define certain fun-
damental function spaces and norms. In Section 3 we present and analyze the TV-L1

model. In particular, we relate the level sets of the input to the solution of the TV-L1

model using a geometric argument and discuss the scale-selection and morphologically
invariant properties of this model. The proofs of the lemmas, theorems, and corollar-
ies are given in the technical report [25]. In Section 4 we briefly give the second-order

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 73–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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cone programming (SOCP) formulation of this model. Numerical results illustrating the
properties of the model are given in Section 5.

2 Preliminaries

Let u ∈ L1, and define the total variation of u as

‖Du‖ := sup
{∫

u div(g) dx :
g ∈ C1

0 (Rn; Rn),
|g(x)|l2 ≤ 1 ∀x ∈ Rn

}
,

and the BV -norm of u as ‖u‖BV := ‖u‖L1 + ‖Du‖, where C1
0 (Rn; Rn) denotes

the set of continuously differentiable vector-valued functions that vanish at infinity.
The Banach space of functions with bounded variation is defined asBV :=

{
u ∈ L1 :

‖u‖BV < ∞} and is equipped with the ‖ · ‖BV -norm. ‖Du‖ is often written in a less
mathematically strict form

∫
|∇u|.

‖Du‖ and BV (Ω) limited to Ω are defined analagously using g ∈ C1
0 (Ω; Rn).

Sets in Rn with finite perimeter are often referred to as BV sets. The perimeter of
a set S is defined by Per(S) := ‖D1S‖, where 1S is the indicator function of S.

Next, we define the space G [15]. Let G denote the Banach space consisting of all
generalized functions v(x) defined on Rn that can be written as

v = div(g), g = [gi]i=1,...,n ∈ L∞(Rn; Rn), (1)

and equipped with the norm ‖v‖G defined as the infimum of all L∞ norms of the func-
tions |g(x)|l2 over all decompositions (1) of v. In short, ‖v‖G := inf{‖ |g(x)|l2 ‖L∞ :
v = div(g)}.

G is the dual of the closed subspace BV of BV , where BV := {u ∈ BV : ∇u ∈
L1} [15]. We note that finite difference approximations to functions in BV and in BV
are the same. For the definition and properties of G(Ω), where Ω ⊂ Rn, see [6].

It follows from the definitions of the BV and G spaces that∫
u v =

∫
u∇ · g = −

∫
Du · g ≤ ‖Du‖‖v‖G, (2)

holds for any u ∈ BV with a compact support and v ∈ G. We say (u, v) is an extremal
pair if (2) holds with equality.

3 The TV-L1 Model

The TV-L1 model is define as a variational problem

min
u∈BV

TV L1λ(u) = min
u∈BV

∫
Ω

|∇u|+ λ

∫
|f − u|. (3)

Although this model appears to be simple, it is very different to the ROF model [21]: it
has the important property of being able to separate out features of a certain scale in an
image as we shall show in the next section.
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In the rest of this section we first relate the parameter λ to the G-norm of the texture
output v, then we focus on the TV-L1 geometry and discuss the properties of the TV-L1

model for scale-based feature selection in subsection 3.1.
Meyer [15] recently showed that the G space, which is equipped with the G-norm,

contains functions with high oscillations. He characterized the solution u of the ROF
model using the G-norm: given any input f defined on R

n, u satisfies ‖f − u‖G = 1
2λ

if λ > (2‖f‖G)−1, and u vanishes (i.e., u ≡ 0) if 0 ≤ λ ≤ (2‖f‖G)−1. We can
interpret this result as follows. First, no matter how regular f is, u is always different
to f as long as f �≡ 0. This is a major limitation of the ROF model, but it can be
relaxed by applying the ROF model iteratively [19] or by using the inverse TV flow [7].
Second, the texture/noise output v has its G-norm given by min{ 1

2λ , ‖f‖G}. Therefore,
the oscillating signal with G-norm less than 1

2λ is removed by the ROF model. A similar
characterization is given below for the TV-L1 model in Theorems 1 and 2.

In order to use the G-norm, we first consider the approximate TV-L1 model in which
a perturbation ε has been added to the fidelity term ‖f −u‖L1 to make it differentiable:

min
u∈BV (Ω)

∫
Ω

|∇u|+ λ

∫
Ω

√
(f − u)2 + ε, (4)

where the image support Ω is assumed to be compact. Since TV L1λ,ε(u) is strictly
convex, problem (4) has a unique solution uλ,ε.

Theorem 1. The solution uλ,ε(= f−vλ,ε) ∈ BV (Ω) of the approximate TV-L1 model
satisfies

‖signε(vλ,ε)‖G ≤ 1/λ,

where signε(·) is defined point-wise by signε(g)(x) := g(x)/
√
|g(x)|2 + ε for any

function g.
Moreover, if ‖signε(f)‖G ≤ 1/λ, uλ,ε ≡ 0 is the solution of the approximate TV-L1

model.
If ‖signε(f)‖G > 1/λ, then there exists an optimal solution uλ,ε satisfying

– ‖signε(vλ,ε)‖G = 1/λ;
–

∫
uλ,ε signε(vλ,ε) = ‖Duλ,ε‖/λ, i.e., uλ,ε and signε(vλ,ε) form an extremal pair.

Next, we relate the solution of the perturbed TV-L1 model to the solution of the (unper-
turbed) TV-L1 model.

Theorem 2. Assuming the TV-L1 model (3) using parameter λ has a unique solution
uλ, then the solution of approximate TV-L1 model (4) using the same parameter λ
satisfies

lim
ε↓0+

‖uλ,ε − uλ‖L1 = 0, lim
ε↓0+

‖vλ,ε − vλ‖L1 = 0.

We note that Chan and Esedoglu [8] proved that (4) has a unique solution for almost all
λ’s with respect to the Lebesgue measure.

In the above two theorems, for ε small enough, the value of signε(v)(x) can be
close to sign(v)(x) even for small v(x). In contrast to ‖v‖G = min{ 1

2λ , ‖f‖G} for the
solution v of the ROF model, Theorems 1 and 2 suggest that the solution v of the TV-L1
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model can be much smaller. In other words, the TV-L1 may not always remove some
oscillating signal from f and erode the structure. This is supported by the following
analytic example from [8]: if f is equal to the disk signal Br, which has radius r and
unit height, then the solution uλ of the TV-L1 model is 0 if 0 < λ < 2/r, f if λ > 2/r,
and cf for any c ∈ [0, 1] if λ = 2/r. Clearly, depending on λ, either 0 or the input
f minimizes the TV-L1 functional. This example also demonstrates the ability of the
model to select the disk feature by its “scale” r/2. The next subsection focuses on this
scale-based selection.

3.1 TV-L1 Geometry

To use the TV-L1 model to separate large-scale and small-scale features, we are often
interested in an appropriate λ that will allow us to extract geometric features of a given
scale. For general input, the TV-L1 model, which has only one scalar parameter λ,
returns images combining many features. Therefore, we are interested in determining a
λ that gives the whole targeted features with the least unwanted features in the output.

For simplicity, we assume Ω = R
2 in this section. Our analysis starts with the

decomposition of f using level sets and relies on the co-area formula (5) [11] and
“layer cake” formula (6) [8], below. Then, we derive a TV-L1 solution formula (8),
in which u∗ is built slice by slice. Each slice is then characterized by feature scales
using the G-value, which extends the G-norm, and the slopes in Theorem 3, below.
Last, we relate the developed properties to real-world applications. In the following we
let U(g, μ) := {x ∈ Dom(g) : g(x) > μ} denote the (upper) level set of a function g
at level μ.

The co-area formula [11] for functions of bounded variation is∫
|Du| =

∫ ∞

−∞
Per(U(u, μ)) dμ. (5)

Using (5), Chan and Esedoglu [8] showed that the TV L1λ functional can be represented
as an integral over the perimeter and weighted areas of certain level sets by the following
“layer cake” formula:

TV L1λ(u) =
∫ ∞
−∞(Per(U(u, μ))

+λ |U(u, μ)\U(f, μ)|+ λ |U(f, μ)\U(u, μ)|)dμ,
(6)

where |S| for a set S returns the area of S. Therefore, an optimal solution uλ to the TV-
L1 model can be obtained by minimizing the right-hand side of (6). We are interested
in finding a u∗ such that U(u∗, μ) minimizes the integrant for almost all μ.

Let us fix λ and focus on the integrand of the above functional and introduce the
problem

min
Σ

C(Γ,Σ) (7)

where C(Γ,Σ) := Per(Σ) + λ|Σ\Γ |+ λ|Γ\Σ|, and Γ and Σ are sets with bounded
perimeters in R2. Let Σf,μ denote a solution of (7) for Γ = U(f, μ). From the definition
of the upper level set, for the existence of a u satisfying U(u, μ) = Σf,μ for all μ, we
need Σf,μ1 ⊇ Σf,μ2 for any μ1 < μ2. This result is given in the following lemma:
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Lemma 1. Let the sets Σ1 and Σ2 be the solutions of (6) for Γ = Γ1 and Γ = Γ2,
respectively, where Γ1 and Γ2 are two sets satisfyingΓ1 ⊃ Γ2.

If either one or both of Σ1 and Σ2 are unique minimizers, then Σ1 ⊇ Σ2; otherwise,
i.e., both are not unique minimizers, Σ1 ⊇ Σ2 may not hold, but in this case, Σ1 ∪ Σ2
is a minimizer of (7) for Γ = Γ1.

Therefore, there always exists a solution of (7) for Γ = Γ1 that is a superset of any
minimizer of (7) for Γ = Γ2.

Using the above lemma, we get the following geometric solution characterization for
the TV-L1 model:

Theorem 3. Suppose that f ∈ BV has essential infimum μ0. Let function u∗ be defined
point-wise by

u∗(x) := μ0 +
∫ ∞

μ0

1Σf,μ
(x)dμ, (8)

where Σf,μ is the solution of (7) for Γ = U(f, μ) that satisfies Σf,μ1 ⊇ Σf,μ2 for
any μ1 < μ2, i.e., Σf,μ is monotonically decreasing with respect to μ. Then u∗ is an
optimal solution of the TV-L1 model (3).

Next, we illustrate the implications of the above theorem by applying the results in [22]
to (7). In [22], the authors introduced the G-value, which is an extension of Meyer’s G-
norm, and obtained a characterization to the solution of the TV-L1 model based on the
G-value and the Slope [5]. These results are presented in the definition and the theorem
below.

Definition 1. Let Ψ : R
2 → 2R be a set-valued function that is measurable in the sense

that Ψ−1(S) is Lebesgue measurable for every open set S ⊂ R. We do not distinguish
Ψ between a set-valued function and a set of measurable (single-valued) functions, and
let

Ψ := {measurable function ψ satisfying ψ(x) ∈ Ψ(x), ∀x}.
The G-value of Ψ is defined as follows:

G(Ψ) := sup
h∈C∞

0 : |∇h|=1
− sup

ψ∈Ψ

∫
ψ(x)h(x)dx. (9)

Theorem 4. Let ∂|f | denote the set-valued sub-derivative of |f |, i.e., ∂|f |(x) equals
sign(f(x)) if f(x) �= 0 and equals the interval [−1, 1] if f(x) = 0. Then, for the TV-L1

model (3),

1. uλ = 0 is an optimal solution if and only if λ ≤ 1
G(∂|f |) ;

2. uλ = f is an optimal solution if and only if λ ≥ suph∈BV
‖Df‖−‖Dh‖

|f−h| ,

where 1
G(∂|f |) ≤ suph∈BV

‖Df‖−‖Dh‖
|f−h| , ∀f ∈ BV .

It follows from the “layer cake” formula (6) that solving the geometric problem (7)
is equivalent to solving the TV-L1 model with input f = 1Γ . Therefore, by applying
Theorem 4 to f = 1Γ , we can characterize the solution of (6) as follows:
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Corollary 1. For the geometric problem (7) with a given λ,

1. Σλ = ∅ is an optimal solution if and only if λ ≤ 1
G(∂|1Γ |) ;

2. Σλ = Γ is an optimal solution if and only if λ ≥ suph∈BV
‖D1Γ ‖−‖Dh‖

|1Γ −h| .

Corollary 1, together with Theorem 3, implies the followings. Suppose that the mask
set S of a geometric feature F coincides with U(f, μ) for μ ∈ [μ0, μ1). Then, for any
λ < 1/G(∂|1S |), 1Σf,μ

= ∅ for μ ∈ [μ0, μ1); hence, the geometric feature F is
not observable in uλ. In the example where F = f = cBr (recall that Br is the disk
function with radius r and unit height), S and U(f, μ) are the circle B̄r with radius r for
μ ∈ [0, c), and G(∂|1S |) = G(∂|Br|) = r/2. Therefore, if λ < 1/G(∂|1S|) = 2/r,
1Σf,μ

= ∅ for μ ∈ [0, c). Also because μ0 = 0 and 1Σf,μ
= ∅ for μ ≥ c in (8), uλ ≡ 0,

which means the feature F = cBr is not included in uλ.
If λ > 1/G(∂|1S|), Σf,μ �= ∅ for μ ∈ [μ0, μ1), which implies at least some part

of the feature F can be observed in uλ. Furthermore, if λ ≥ suph∈BV (‖D1Γ ‖ −
‖Dh‖)/

∫
|1Γ − h|, we get Σf,μ = U(f, μ) = S for μ ∈ [μ0, μ1) and therefore, the

feature F is fully contained in uλ. In the above example where F = f = cBr and
S = B̄r, it turns out 2/r = 1/G(∂|1S|) = suph∈BV (‖D1Γ ‖ − ‖Dh‖)/

∫
|1Γ − h|.

Therefore, if λ > 2/r, Σf,μ = S for μ ∈ [0, c), and uλ = cBr = f .
In general, although a feature is often different from its vicinity in intensity, it cannot

monopolize a level set of the input f , i.e., it is represented by an isolated set in U(f, μ),
for some μ, which also contains isolated sets representing other features. Consequently,
uλ that contains a targeted feature may also contain many other features. However,
from Theorem 3 and Corollary 1, we can easily see that the arguments for the case
S = U(f, μ) still hold for the case S ⊂ U(f, μ).

Proposition 1. Suppose there are a sequences of features in f that are represented by
sets S1, S2, . . . , Sl and have distinct intensity values. Let

λmin
i :=

1
G(∂|1Si |)

, λmax
i := sup

h∈BV

‖D1Si‖ − ‖Dh‖∫
|1Si − h| , (10)

for i = 1, . . . , l. If the features have decreasing scales and, in addition, the following
holds

λmin
1 ≤ λmax

1 < λmin
2 ≤ λmax

2 < . . . < λmin
l ≤ λmax

l , (11)

then feature i, for i = 1, . . . , l, can be precisely retrieved as uλmax
i +ε− uλmin

i −ε (here ε

is a small scalar that forces unique solutions because λmin
i = λmax

i is allowed).

This proposition holds since for λ = λmin
i − ε, feature i completely vanishes in uλ, but

for λ = λmax
i − ε, feature i is fully contained in uλ while there is no change to any

other features.
To extract a feature represented by set S in real-world applications, one can compute

G(∂|1S |) off-line and use a λ slightly greater than 1/G(∂|1S|). The intensity and the
position of the feature in f are not required as priors.

Next, we present a corollary of Theorem 3 to finish this section.

Corollary 2. [Morphological invariance] For any strictly increasing function g : R →
R, uλ(g ◦ f) = g ◦ uλ(f).
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4 Second-Order Cone Programming Formulations

In this section, we briefly show how to formulate the discrete version of the TV-L1

model (3) as a second-order program (SOCP) so that it can be solved in polynomial
time.

In an SOCP the vector of variables x ∈ Rn is composed of subvectors xi ∈ Rni –
i.e., x ≡ (x1;x2; . . . ;xr) – where n = n1 +n2 + . . .+nr and each subvector xi must
lie either in an elementary second-order cone of dimension ni

Kni ≡ {xi = (x0
i ; x̄i) ∈ R× R

ni−1 | ‖x̄i‖ ≤ x0
i },

or an ni-dimensional rotated second-order cone

Qni ≡ {xi ∈ R
ni | xi = x̄, 2x̄1x̄2 ≥

ni∑
i=3

x̄2
i , x̄1, x̄2 ≥ 0},

which is an elementary second-order cone under a linear transformation.
With these definitions an SOCP can be written in the following form [1]:

min c�1 x1 + · · ·+ c�r xr

s.t. A1x1 + · · ·+ Arxr = b
xi ∈ Kni orQni , for i = 1, . . . , r,

(12)

where ci ∈ Rni and Ai ∈ Rm×ni , for any i, and b ∈ Rm. As is the case for linear
programs, SOCPs can be solved in polynomial time by interior point methods.

We assume that images are represented as 2-dimensional n × n matrices, whose
elements give the “grey” values of corresponding pixels, i.e., fi,j = ui,j + vi,j , for
i, j = 1, . . . , n.

First, as the total variation of u is defined discretely by forward finite differences as∫
|∇u| :=

∑
i,j [((∂

+
x u)i,j)2 + ((∂+

y u)i,j)2]1/2, by introducing new variables ti,j , we
can express min{

∫
|∇u|} as min{

∑
i,j ti,j} subject to the 3-dimensional second-order

cones (ti,j ; (∂+
x u)i,j , (∂+

y u)i,j) ∈ K3. Second, minimizing the fidelity term
∫
|f − u|

is equivalent to minimizing s subject to
∑

i,j(fi,j−ui,j) ≤ s and
∑

i,j(ui,j−fi,j) ≤ s.
Therefore, the SOCP formulation of the TV-L1 model is

mins,t,u,∂+
x u,∂+

y u

∑
1≤i,j≤n ti,j + λs

s.t. (∂+
x u)i,j = ui+1,j − ui,j ∀i, j = 1, . . . , n,

(∂+
y u)i,j = ui,j+1 − ui,j ∀i, j = 1, . . . , n,∑
1≤i,j≤n(fi,j − ui,j) ≤ s,∑
1≤i,j≤n(ui,j − fi,j) ≤ s,

(ti,j ; (∂+
x u)i,j , (∂+

y u)i,j) ∈ K3 ∀i, j = 1, . . . , n.

(13)

Finally, we note that both G(∂|f |) and suph∈BV
‖Df‖−‖Dh‖

|f−h| , after homogenizing
the objective function of the latter, can be easily developed based on the SOCP formu-
lation of the total variation term

∫
|Dh|.



80 W. Yin, D. Goldfarb, and S. Osher

5 Numerical Results

5.1 Comparison Among Three Decomposition Models

In this subsection, we present numerical results of the TV-L1 model and compare them
with the results of the Meyer [15] and the Vese-Osher (VO) [23] models, below.

The Meyer model: minu∈BV {
∫
|∇u| : ‖v‖G ≤ σ, f = u + v}.

The Vese-Osher model: minu∈BV

∫
|∇u|+ λ

∫
|f − u− div(g)|2 + μ

∫
|g|.

We also formulated these two models as SOCPs, in which no regularization or approxi-
mation is used (refer to [10] for details). We used the commercial package Mosek as our
SOCP solver. In the first set of results, we applied the models to relatively noise-free
images.

We tested textile texture decomposition by applying the three models to a part (Fig.
1 (b)) of the image “Barbara” (Fig. 1 (a)). Ideally, only the table texture and the strips on
Barbara’s clothes should be extracted. Surprisingly, Meyer’s model did not give good
results in this test as the texture v output clearly contains inhomogeneous background.
To illustrate this effect, we used a very conservative parameter - namely, a small σ - in
Meyer’s model. The outputs are depicted in Fig. 1 (d). As σ is small, some table cloth
and clothes textures remain in the cartoon u part. One can imagine that by increasing
σ we can get a result with less texture left in the u part, but with more inhomogeneous
background left in the v part. While Meyer’s model gave unsatisfactory results, the other
two models gave very good results in this test as little background is shown in Figures
1 (e) and (f). The Vese-Osher model was originally proposed as an approximation of
Meyer’s model in which the L∞-norm of |g| is approximated by the L1-norm of |g|.
We guess that the use of the L1-norm allows g to capture more texture signal while the
original L∞-norm in Meyer’s model makes g to capture only the oscillatory pattern of
the texture signal. Whether the texture or only the oscillatory pattern is more prefer-
able depends on the applications. For example, the latter is more desirable in analyzing
fingerprint images. Compared to the Vese-Osher model, the TV-L1 model generated
a little sharper cartoon in this test. The biggest difference, however, is that the TV-L1

model kept most brightness changes in the texture part while the other two kept them in
the cartoon part. In the top right regions of the output images, the wrinkles of Barbara’s
clothes are shown in the u part of Fig. 1 (e) but in the v part of (f). This shows that the
texture extracted by TV-L1 has a wider dynamic range.

In the second set of results, we applied the three models to the image “Barbara”
after adding a substantial amount of Gaussian noise (standard deviation equal to 20).
The resulting noisy image is depicted in Fig. 1 (c). All the three models removed the
noise together with the texture from f , but noticeably, the cartoon parts u in these
results (Fig. 1 (g)-(l)) exhibit a staircase effect to different extents. We tested different
parameters and conclude that none of the three decomposition models is able to separate
image texture and noise.
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Table 1

Component S̄1 S̄2 S̄3 S̄4 S̄5
G-value 19.39390 13.39629 7.958856 4.570322 2.345214
λmin 0.0515626 0.0746475 0.125646 0.218803 0.426400

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 =
0.0515 0.0746 0.1256 0.2188 0.4263 0.6000

(a) 512 × 512 “Barbara” (b) a 256 × 256 part of (a) (c) noisy “Barbara” (std.=20)

(d) Meyer (σ = 15) applied to (b) (e) Vese-Osher (λ = 0.1, μ = 0.5) applied to (b)

(f) TV-L1 (λ = 0.8) applied to (b) (g) Meyer (σ = 20) applied to (c)

(h) Vese-Osher (λ = 0.1, μ = 0.5) applied to (c) (l) TV-L1 (λ = 0.8) applied to (c)

Fig. 1. Cartoon-texture decomposition and denoising results by the three models
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(S1) (S2) (S3) (S4) (S5) (f ):
f = 5

i=1 Si

(u1) (u2) (u3) (u4) (u5) (u6)

(v1) (v2) (v3) (v4) (v5) (v6)

(u2 − u1) (u3 − u2) (u4 − u3) (u5 − u4) (u6 − u5)

(a) f (c) u (e) v (i) f (ii) f (iii) f

(b) f (d) u (f) v (iv) v′ (v) v′ (vi) v′

Fig. 2. Feature selection using the TV-L1 model

5.2 Feature Selection Using the TV-L1 Model

We applied the TV-L1 model with different λ’s to the composite input image (Fig. 2
(f )). Each of the five components in this composite image is depicted in Fig. 2 (S1)-
(S5). We name the components by S1, . . . , S5 in the order they are depicted in Fig. 2.
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They are decreasing in scale. This is further shown by the decreasing G-values of their
mask sets S̄1, . . . , S̄5 , and hence, their increasing λmin values (see (10)), which are
given in Table 1. We note that λmax

1 , . . . , λmax
6 are large since the components do not

possess smooth edges in the pixelized images. This means that property (11) does not
hold for these components, so using the lambda values λ1, . . . , λ6 given in Table 1 does
not necessarily give entire feature signal in the output u. We can see from the numerical
results depicted in Fig. 2 that we are able to produce output u that contains only those
features with scales larger that 1/λi and that leaves, in v, only a small amount of the
signal of these features near non-smooth edges. For example, we can see the white
boundary of S2 in v3 and four white pixels corresponding to the four corners of S3
in v4 and v5. This is due to the nonsmoothness of the boundary and the use of finite
differences. However, the numerical results closely match the analytic results given in
Subsection 4.1. By forming differences between the outputs u1, . . . , u6, we extracted
individual features S1, . . . , S5 from input f . These results are depicted in the fourth row
of images in Fig. 2.

We further illustrate the feature selection capacity of the TV-L1 model by present-
ing two real-world applications. The first application [24] is background correction for
cDNA microarray images, in which the mRNA-cDNA gene spots are often plagued
with the inhomogeneous background that should be removed. Since the gene spots have
similar small scales, an appropriate λ can be easied derived from Proposition 1. The re-
sults are depicted in Fig. 2 (c)-(f). The second application [9] is illumination removal
for face recognition. Fig. 2 (i)-(iii) depicts three face images in which the first two im-
ages belong to the same face but were taken under different lighting conditions, and the
third image belongs to another face. We decomposed their logarithm using the TV-L1

model (i.e., f
log→ f ′ TV−L1

−→ u′ + v′) with λ = 0.8 and obtained the images (v′) depicted
in Fig. 2 (iv)-(vi). Clearly, the first two images (Fig. 2 (iv) and (v)) are more corre-
lated than their originals while they are very less correlated to the third. The role of
the TV-L1 model in this application is to extract the small-scale facial objects like the
mouth edges, eyes, and eyebrows that are nearly illumination invariant. The processed
images should make the subsequent computerized face comparison and recognition
easier.
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Structure-Texture Decomposition by a TV-Gabor Model
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Abstract. This paper explores new aspects of the image decomposition problem
using modern variational techniques. We aim at splitting an original image f into
two components u and v, where u holds the geometrical information and v holds
the textural information. Our aim is to provide the necessary variational tools and
suggest the suitable functional spaces to extract specific types of textures.

Our modeling uses the total-variation semi-norm for extracting the structural
part and a new tunable norm, presented here for the first time, based on Gabor
functions, for the textural part. A way to select the splitting parameter based on
the orthogonality of structure and texture is also suggested.

Keywords: Image decomposition, BV , Hilbert space, projection, total-variation,
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1 Introduction

1.1 Motivation

Decomposing an image into meaningful components is an important and challenging
inverse problem in image processing. A first range of models are denoising models: in
such models, the image is assumed to have been corrupted by noise, and the processing
purpose is to remove the noise. This task can be regarded as a decomposition of the
image into signal parts and noise parts. Certain assumptions are taken with respect to
the signal and noise, such as the piecewise smooth nature of the image, which enables
good approximations of the clean original image.

In modern image-processing, two main successful approaches are usually consid-
ered to solve the denoising problem. The first one is based on manipulating the wavelet
coefficients of the image [12,22,10,21,23]. The second one is based on solving nonlin-
ear partial-differential equations (PDE’s) associated with the minimization of an energy
composed of some norm of the gradient [30,9,3,23,26,27].
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A related but different problem, which is the main topic of this paper, is the decom-
position of an image into its structural and textural parts [33,28,11,34,4,5,32,17]. The
aim of this type of decomposition is harder to formulate explicitly. The general concept
is that an image can be regarded as composed of a structural part, corresponding to the
main large objects in the image, and a textural part, containing fine scale-details, usually
with some periodicity and oscillatory nature.

We aim at splitting an original image f into two components u and v, u containing
the geometrical information and v the textural information. Our modeling is based on
TV regularization approaches: we minimize a functional with two terms, a first one
based on the total variation and a second one on a different norm adapted to the texture
component.

Gabor functions, proposed by [14], have been found to be very useful in texture
processing applications, e.g. [13,20,35], and to have close relations with the human-
visual system [29]. We design a family of Hilbert spaces based on Gabor functions.
This provides us with a new TV -Gabor model in which one can take advantage of
a-priori knowledge of both the frequency and the direction of the textures of interest.

We also attempt to provide a mechanism to select the regularization parameter for
decomposition. Following ideas on diffusion stopping time for denoising [25], we sug-
gest to use a selection criterion based on the correlation of the structure and the texture
parts.

The paper is organized as follows: in Section 2 the general TV-Hilbert regularization
model is explained, supplying the necessary theoretical foundations for the proposed
method. In Section 3 we explain the motivation for texture specific kernels and intro-
duce the TV-Gabor model. We address more specific implementation details in Section
4. In Section 5 we propose a way to select the splitting parameter. Numerical examples
are shown in Section 6. We conclude with the main contributions of this study in Sec-
tion 7. Notice that this paper is an abridged version of [7] with only a selected subset of
the content of [7].

2 TV -Hilbert Regularization Model

2.1 Discretization

Our discretization assumes that the image is a two dimension vector of size N × N .
We denote by X the Euclidean space RN×N , and Y = X × X . The space X will
be endowed with the L2 inner product (u, v)L2 =

∑
1≤i,j≤N ui,jvi,j and the norm

‖u‖L2 =
√

(u, u)L2 . To define a discrete total variation, we introduce a discrete version
of the gradient operator. If u ∈ X , the gradient∇u is a vector in Y given by: (∇u)i,j =
((∇u)1i,j , (∇u)2i,j), with

(∇u)1i,j =
{

ui+1,j − ui,j if i < N
0 if i = N

and

(∇u)2i,j =
{

ui,j+1 − ui,j if j < N
0 if j = N

.

The discrete total variation of u is then defined by: J(u) =
∑

1≤i,j≤N |(∇u)i,j |.
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2.2 H Hilbert Space

In [6], the authors have considered other spaces to model oscillating patterns. They
propose to use a general family of Hilbert spaces that we will consider in this paper.
These Hilbert spaces are defined thanks to an operator K with the following properties:
K is a linear symmetric positive operator from A to L2, where A is either X0 or L2

(where X0 = {x ∈ X /
∑

i,j xi,j = 0}). In the case when A = X0, then we extend
K to the whole L2 by setting K(x) = +∞ if x ∈ L2\X0. Notice that with these
assumptions, we can define K−1 on ImK = {z ∈ L2 such that ∃x ∈ A with z =
K(x)}. If f and g are in X0, then let us define:

〈f, g〉H = 〈f,Kg〉L2 (1)

This defines an inner product on X0 = {x ∈ X /
∑

i,j xi,j = 0}. Examples:

1. When K = Id, then H = L2, and (2) is the ROF model [30].
2. When K = −Δ, then H = H = {f ∈ L2,∇f ∈ L2}.
3. When K = −Δ−1, then H = H−1 = (H1

0 )∗ (see [1] for the definition of H−1),
and (2) is the OSV model [28].

2.3 TV -Hilbert Model

The model studied in [6] is the following:

inf
u

(
J(u) +

λ

2
‖f − u‖2H

)
(2)

Some mathematical results about this problem are provided in [6] (see also [2] for
similar results in the case of image denoising and deblurring). In particular, the exis-
tence and uniqueness of a solution for (2) is proved. A modification of Chambolles’s
projection algorithm [8] is also proposed for computing the solution of problem (2):

pn+1
i,j =

pn
i,j + τ(∇(K−1div (pn)− λf))i,j

1 + τ |(∇(K−1div (pn)− λf))i,j |
(3)

where p0 = 0.

Theorem 1. If τ ≤ 1
8‖K−1‖L2

, then 1
λK−1div pn → v̂ as n → ∞, and f − 1

λK−1

div pn → û as n →∞, where û is the solution of problem (2) and v̂ = f − û.

In [6], the authors apply their framework to solve the problem of image denoising.
Here, we intend to use (2) to carry out frequency and directional adaptive image de-
composition. Indeed, by choosing the kernel K in a suitable way, we can emphasize the
weight of some frequencies and some directions. To construct the “texture-norm” we
use Gabor wavelets.

The projection algorithm proposed in [6] to solve (2) is given by (3). In fact, one
needs to use K−1 and not K to solve (2) with this algorithm. It is therefore easier to
construct K−1 (so that K has some good properties, but without computing K explic-
itly). K needs to be a non negative symmetric linear operator. Here we even assume
that K is positive. This implies that K−1 is also a symmetric positive linear operator.
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Fig. 1. The kernel K and its inverse K−1 for the OSV, ROF and the proposed TV-Gabor model

Remark on a Possible Alternative Construction: K being a positive symmetric operator,
there exists a unique positive symmetric linear operator, denoted by

√
K, such that√

K
2

= K . In particular, we have ‖f − u‖2H = 〈f − u,K(f − u)〉L2 = ‖
√

K(f −
u)‖2L2 . We can then rewrite problem (2) as:

inf
u

(
J(u) +

λ

2
‖
√

K(f − u)‖2L2

)
(4)

In fact, instead of K−1, it also may be interesting to construct
√

K
−1

. In what follows,

we only focus on K−1, but our construction can be applied to
√

K
−1

as well.

3 Texture-Specific Kernels

In [6] it was shown that the difference between the OSV model [28] and ROF model
[30] could be understood as frequency weighting of the L2 norm for the H−1 fidelity
term of OSV. The frequency weighting of the square norm is proportional to 1

(2πf)2 ,

which corresponds to the Δ−1 operator in the frequency domain, see Fig. 1 . The low
frequencies are therefore highly penalized in the fidelity term, considerably reducing
the eroding effect compared with ROF. This has proved to be an efficient tool for image
denoising [28,5]. However, other linear kernels could be used for adaptive frequency
algorithms.

In this section we address the problem of designing a family of kernels for image
decomposition. The operator K is a convolution operator, therefore K−1 in the Fourier
domain is simply its inverse. Moreover, K−1 is also a convolution operator. We denote
by H the associated filter, and in the rest of the section we focus on the designing of
this filter.

In the u + v decomposition model K penalizes frequencies that are not considered
as part of the texture component. Therefore K−1 could be interpreted as the frequencies
which should mainly be included in the texture part. A general and simple characteriza-
tion of textures could be done using Gabor functions. These functions would typically
describe the type of textures we would like to extract. Naturally, they apply as good can-
didates for K−1. As already mentioned, the inverse kernel is actually the one needed
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in the numerical implementation. Thus our proposed design strategy is to use Gabor
functions for constructing the inverse kernel. Notice that other design methods could be
used. We use the function:

g(x) = cos (2πνx)
1√

2πσ2
exp

(
−x2

2σ2

)
(5)

This gives the following values for the filter H :

hk = cos (2πνk)
1√

2πσ2
exp

(
−k2

2σ2

)
(6)

ν ∈ (0, 0.5] is the frequency of the texture. σ is related to the width of the band-pass
around this frequency. A small σ in the spatial domain means a wide band-pass in the
frequency domain. If we know the frequency of the texture we want to get, it is then
interesting to use a large σ (which means a small band-pass in the frequency domain).
Note that some restrictions apply for choosing σ, see Lemma 2 in Section 4. Actually,
σ cannot be very large, which may be interpreted as a form of an uncertainty principle.

(5) is a one dimensional filter. There are a few methods to then design a two dimen-
sional filter. One possibility is to consider the product g(x)g(y). We will analyze this
possibility later. Another choice to construct our filter H is to use rotationally invariant
Gabor wavelets as:

g(x, y) = cos
(
2πν

√
x2 + y2

) 1√
2πσ2

exp
(
−x2 − y2

2σ2

)
(7)

Such a choice will give better numerical results when the texture is known to be rota-
tionally symmetric.

Directions: Many textures are not rotationally symmetric. It is therefore interesting to
add this direction information in our filter H . To do so, we just need to use a 1D filter as
(5), and then rotate it so that it fits the direction of the texture. A possible improvement
is to use an ellipse (see [13] for instance).

We propose a way to construct a 2D kernel K−1 (in fact of the associated filter H)
out of a 1D filter:

Hx =
(
h d−1

2
, . . . , h1, h0, h1, . . . , h d−1

2

)
(8)

where d is the dimension of the filter Hx, and hk is given by (6). Since K−1 is symmet-
ric, we also choose Hx to be symmetric. We then set H = Hx ∗Hy , where H stands
for the filter associated to K−1, ∗ denotes convolution, and Hy = HT

x , where T stands
for transpose. Remark: for the convolution, we consider periodic boundary conditions.

4 Eigenvalues

In this section, we compute the eigenvalues of K−1, and give a sufficient condition so
that they are positive.

The filter H associated with K−1 should define a linear symmetric positive opera-
tor. By construction, H defines a linear symmetric operator. But as we will see, we have
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to impose some conditions on the values hk of the filter so that it is positive. We recall
that a linear symmetric operator is positive if and only if its eigenvalues are positive
(this can even be taken as a definition). To get the positivity for H , we are therefore
lead to compute its associated eigenvalues (the ones of the associated linear mapping).
Since we have constructed H out of two 1-D filters, we are in fact interested in the
eigenvalues of these filters (since they will give us the eigenvalues of K−1). Since K−1

is positive, we also impose the constraint that Hx is positive.
The filtering of an image of size N ×M by Hx corresponds to a linear mapping

from RNM to RNM (this is the reason why we speak of the eigenvalues of the filter H ,
which are in fact the eigenvalues of the corresponding linear mapping). Let us denote
by Ax (resp Ay) the matrix of size (NM)2 associated to Hx (resp Hy). An image I is
a matrix (Ii,j), with 1 ≤ i ≤ N and 1 ≤ j ≤ M . We rewrite it as a 1 Dimensional
vector Ik, with 1 ≤ k ≤ NM , using Ik = Ii,j if k = M(i− 1) + j.

Since Ax and Ay have a very particular form (they are both circulant matrices), we
can compute the exact values of their eigenvalues, as stated by the following result:

Proposition 1. The eigenvalues of Ax are:
{
h0+2

∑d−1
2

k=1 hk cos
(

2πqk
M

)
, 0≤q≤ M

2

}
and the ones of Ay are:

{
h0 + 2

∑ d−1
2

k=1 hk cos
(

2πqk
N

)
, 0 ≤ q ≤ N

2

}
.

Proof. The proof is just a consequence of the fact that Ax and Ay are circulant matrix.
We refer the interested reader to [7] for the details.

Now that we have computed the eigenvalues of Ax and Ay , we can get the ones of
K−1. Since Ax and Ay commute, the eigenvalues of K−1 are contained in the set:{

P1(ω
p
M )P2(ω

q
N), 0 ≤ q ≤ M

2
, 0 ≤ q ≤ N

2

}
(9)

Since the eigenvalues of Ax and Ay are positive, so are the ones of K−1. If we denote
by γx

min (resp γy
min) the smallest eigenvalue of Ax (resp Ay) and by γx

max (resp γy
max)

the largest eigenvalue of Ax (resp Ay), then, if γ is an eigenvalue of K−1, we have:
γx

minγ
y
min ≤ γ ≤ γx

maxγ
y
max. From this last point, we deduce in particular that

‖K−1‖L2 ≤ γx
maxγ

y
max (10)

Lemma 1. If we choose τ ≤ 1
8γx

maxγy
max

in algorithm (3), then the algorithm converges.

Proof. This a direct consequence of (10) and of Theorem 1.

Unfortunately, the eigenvalues of K−1 can be negative. The next lemma gives a
sufficient condition for the eigenvalues of K−1 to be positive.

Lemma 2. If h0 ≥ 2
∑ d−1

2
k=1 |hk| then the eigenvalues of Ax, Ay and K−1 are positive.

Proof. This is a consequence of Proposition 1 and of (9).
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Notice that the above condition for h0 is only a sufficient condition. The eigenvalues
can still be positive in less restrictive cases, and can be computed explicitly for the
designed kernel (see Proposition 1).

By using Lemma 2 and the explicit values of hk given by (6), we can derive more
explicit sufficient conditions about the positivity of the eigenvalues of K−1. In particu-
lar, we can show that if σ is small enough, then the eigenvalues of H are positive, see
more details in [7].

5 Parameter Selection

In this section, we suggest a method to select the weight parameter for a proper de-
composition of an image. The authors are not aware of any other suggested method on
how to choose the value of λ for decomposition. Therefore we first discuss shortly the
solutions at present that are used for denoising and explain the difficulties that arise in
decomposition.

For the denoising problem, one often assumes that the variance of the noise σ2 is
known a-priori or can be well estimated from the image. As the v part in the denoising
case should contain mostly noise, a natural condition is to select λ such that the variance
of v is equal to that of the noise, that is var(v) = σ2. Such a method was used in
[30] in the constrained ROF model, and this principle dates back to Morozov [24] in
regularization theory. A modern approach, suggested recently in [15,18], is to try to
optimize a criterion, such as the Signal-to-Noise Ratio (SNR). It was shown that this
method can achieve better results than the constrained formulation, in terms of SNR
and visually. This method also relies on an estimation of the noise variance.

Both of the above approaches cannot be applied for finding λ in decomposition.
Here we do not know of a good way to estimate the texture variance, also there is
no performance criterion like the SNR, which can be optimized. Therefore we should
resort to a different approach.

Our approach follows the work of Mrazek-Navara [25], used for finding the stop-
ping time for denoising with nonlinear diffusions. The method relies on a correlation
criterion and assumes no knowledge of noise variance. As shown in [15], its perfor-
mance is inferior to the SNR-based method of [15] and to an analogue of the variance
condition for diffusions. For decomposition, however, the approach of [25], adopted for
the variational framework, may be a good basic way for the selection of λ.

In this paper the general decomposition framework is of the form:

EStructure(u) + λETexture(v), f = u + v, (11)

where u and v minimize the above total energy. Our goal is to find the right balance
between the energy terms, or the value of λ, which produces a meaningful structure-
texture decomposition.

Let us define first the (empirical) notions of mean, variance and covariance: the
mean is q̄

.= 1
|Ω|

∫
Ω qdΩ, the variance is V (q) .= 1

|Ω|
∫

Ω(q− q̄)2dΩ, and the covariance

is cov(q, r) .= 1
|Ω|

∫
Ω

(q − q̄)(r − r̄)dΩ. We would like to have a measure that defines
orthogonality between two signals and is not biased by the magnitude (or variance) of



92 J.-F. Aujol et al.

the signals. A standard measure in statistics is the correlation, which is the covariance
normalized by the standard deviations of each signal:

corr(q, r) .=
cov(q, r)√
V (q)V (r)

.

By the Cauchy-Schwarz inequality it is not hard to see that cov(q, r) ≤
√

V (q)V (r)
and therefore | corr(q, r)| ≤ 1. When the correlation is 0 we refer to the two signals
as not correlated. This is a necessary condition (but not a sufficient one) for statistical
independence. It often implies that the signals can be viewed as produced by different
“generators” or models.

To guide the parameter selection of a decomposition we use the following assump-
tion:

Assumption: The texture and the structure components of an image are not correlated.
This assumption can be relaxed by stating that the magnitude of the correlation of the
components is very low. Let us define the pair (uλ, vλ) as the one minimizing (11) for
a specific λ.

Following the above assumption, to find a suitable parameter λ, we are led to con-
sider the following problem:

λ∗ = argminλ (| corr(uλ, vλ)|) . (12)

In practice, one generates a scale-space using the parameter λ (in our formulation,
smaller λ means more smoothing of u) and selects the parameter λ∗ as the first local
minimum of the correlation function between the structural part u and the oscillating
part v. See also [15,16,18,17,25,6] for related approaches.

This selection method can be very effective in simple cases with very clear distinc-
tion between texture and structure. In these cases corr(u, v) behaves smoothly, reaches
a minimum approximately at the point where the texture is completely smoothed out
from u, and then increases, as more of the structure gets into the v part (see Fig. 2).

For more complicated images, there are textures and structures of different scales
and the distinction between them is not obvious. In terms of correlation, there is no
more a single minimum and the function may oscillate.

As a first approximation of a decomposition with a single scalar parameter, we sug-
gest to choose λ after the first local minimum of the correlation is reached. At this stage
we cannot claim a fully automatic mechanism for the parameter selection that always
works, but rather a highly relevant measurement that should be taken into consideration
in future development of automatic decompositions.

6 Numerical Results

We show some numerical results obtained with the new TV -Gabor model on Figures 2
to 4.

In Figure 2, the texture is a periodic signal of frequency 1/π ≈ 0.32. In this case
we use a rotationally symmetric Gabor function of frequency 0.25 and σ = 1 (no direc-
tional knowledge is incorporated). As expected, the decomposition in this case is very
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good. In the next two examples we focus on the ability of the model to have directional
selectivity of the textural part, a main feature that clearly distinguishes the TV -Gabor
model from the previous ones. In case the textural directions are not known beforehand,
we suggest to select them by the dominant peaks in the Fourier domain in medium and
high frequencies. This can give basic but sufficient information for designing the ker-
nel (choosing frequency and preferred direction). The Fourier transforms of the input
images are shown on the top row, second column of Figures 3 and 4. In Figure 3 the
original image is composed of two types of textures and a synthetic structural part. We
would like to extract the periodic texture in the ellipses, and not the small squares on
the top right. This type of selectivity is hard, but is achieved quite well. Edges of the
structural part are kept sharp, and clearly outperforms any linear kernel that would be
designed to achieve a similar goal. Compared to TV − L2 (Fig. 3, bottom right) one
observes that both textures are mostly in the v part. Also there is some more erosion of
the structure (seen in the brighter triangle in the v component) and some “left-overs” of
the ellipses-texture in the u part. The comparison was made such that both v parts of
TV -Gabor and TV − L2 have the same L2 norm.

In Figures 4 we show another example of directional decomposition of part of a
Dollar note image. In this case, we use the directional TV -Gabor model in the y direc-
tion to capture the forehead textures. For comparison, we also display the result with
the standard TV −L2 model. As the textures are quite fine with low contrast, we show
a contrast enhanced version of v, by multiplying the v part by 4. Again here, both v
components have the same L2 norm. One clearly sees the high directional selectivity of
the TV -Gabor model on the left, versus the non-selectiveness of TV − L2.

f u v corr(u, v)
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v)

Fig. 2. Decomposition of a simple image by TV-Gabor

7 Conclusion

In this paper, we presented a new general variational model for the image decompo-
sition problem. Given an original image f , the objective is to split the image into two
components, u containing the geometrical information and v the textural information.

We introduced a TV -Gabor model which leads us to adaptive frequency and direc-
tional image decomposition. Our modeling is based on minimizing a functional with
two terms, the first one is the total variation semi-norm and the second one is a Hilbert-
space norm adapted to the texture component of the image. In the case when we have
some additional information about the texture, then we can take advantage of it by
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f Fourier of f corr(u, v)
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Fig. 3. u, v components of the decomposition of a synthetic image with textures of specific fre-
quency and orientation by TV -Gabor and TV − L2. The TV -Gabor can be more selective and
reduce the inclusion in v of undesired textures / small-structures like the small blocks on the top
right. Also erosion of large structures is reduced (more apparent in the brighter triangle).
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Fig. 4. Decomposition of a Dollar note image by TV-Gabor in the y direction and by TV-L2. For
better visualization, the v part is multiplied by 4.

incorporating this knowledge in the functional. We have designed and studied the cor-
responding filters, and we have illustrated this new approach with numerical examples.

In this paper we presented a way to design simple texture-specific filters based
on Gabor functions. Other, more sophisticated methods could be incorporated to this
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framework, such as ones based on wavelets [31]. In future works we intend to explore
these issues. Notice that a straightforward extension of the new TV -Gabor model to
multiple selected directions, is to use the linearity of the Hilbert fitting term and simply
add several directional kernels.

In addition, a way to select the value of λ, the weight parameter between the two
norms, was suggested. This is based on a natural orthogonality assumption between the
structure and the texture parts.

An important future generalization for the u + v decomposition is to consider a
multi-scale approach, as done e.g. in [32,17,16,27,19].
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4. J.F. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle. Image decomposition into a
bounded variation component and an oscillating component. Journal of Mathematical Imag-
ing and Vision, 22(1):71–88, January 2005.

5. J.F. Aujol and A. Chambolle. Dual norms and image decomposition models. International
Journal on Computer Vision, 63(1):85–104, June 2005.

6. J.F. Aujol and G. Gilboa. Implementation and parameter selection for BV -Hilbert space
regularizations, 2004. UCLA CAM Report 04-66.

7. J.F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-texture image decomposition
– modeling, algorithms, and parameter selection, 2005. UCLA CAM Report 05-10,
ftp://ftp.math.ucla.edu/pub/camreport/cam05-10.pdf.

8. A. Chambolle. An algorithm for total variation minimization and applications. JMIV, 20:89–
97, 2004.

9. A. Chambolle and P.L. Lions. Image recovery via total variation minimization and related
problems. Numerische Mathematik, 76(3):167–188, 1997.

10. A. Chambolle, R.A. De Vore, N. Lee, and B.J. Lucier. Nonlinear wavelet image processing:
Variational problems, compression, and noise removal through wavelet shrinkage. IEEE
Transcations on Image Processing, 7(3):319–335, March 1998.

11. T. Chan and S. Esedoglu. Aspects of total variation regularized L1 function approximation,
2004. CAM report 04-07, to appear in SIAM Journal on Applied Mathematics.

12. D.L. Donoho and M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage.
Journal of the American Statistical Association, 90(432):1200–1224, December 1995.

13. D. Dunn and W.E. Higgins. Optimal Gabor filters for texture segmentation. IEEE Transac-
tions on Image Processing, 4(7):947–964, July 1995.

14. D. Gabor. Theory of communication. J. Inst. of Electrical Engineering, 93(3):429–457,
1946.

15. G. Gilboa, N. Sochen, and Y.Y. Zeevi. Estimation of optimal PDE-based denoising in the
SNR sense. To appear in IEEE Trans. Image Processing, see http://www.math.ucla.edu/
∼gilboa/.

16. G. Gilboa, N. Sochen, and Y.Y. Zeevi. Variational denoising of partly-textured images by
spatially varying constraints. submitted.



96 J.-F. Aujol et al.

17. G. Gilboa, N. Sochen, and Y.Y. Zeevi. Texture preserving variational denoising using an
adaptive fidelity term. In Proc. VLSM 2003, Nice, France, pages 137–144, 2003.

18. G. Gilboa, N. Sochen, and Y.Y. Zeevi. Estimation of the optimal variational parameter via
SNR analysis. In Scale-Space ’05, volume 3459 of Lecture Notes in Computer Science,
pages 230–241, April 2005.

19. C. Groetsch and O. Scherzer. Inverse scale space theory for inverse problems. In Scale-Space
’01, volume 2106 of Lecture Notes in Computer Science, pages 317–325, 2001.

20. A.K. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern
Recognition, 24(12):1167–1186, 1991.

21. F. Malgouyres. Minimizing the total variation under a general convex constraint for image
restoration. IEEE transactions on image processing, 11(12):1450–1456, December 2002.

22. S.G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693, July 1989.

23. Yves Meyer. Oscillating patterns in image processing and in some nonlinear evolution equa-
tions, March 2001. The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures.

24. V. A. Morosov. On the solution of functional equations by the method of regularization.
Soviet Math. Dokl., 7:414–417, 1966.
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Abstract. We introduce a novel type of region based active contour
using image inpainting. Usual region based active contours assume that
the image is divided into several semantically meaningful regions and
attempt to differentiate them through recovering dynamically statisti-
cal optimal parameters for each region. In case when perceptually dis-
tinct regions have similar intensity distributions, the methods mentioned
above fail. In this work, we formulate the problem as optimizing a ”back-
ground disocclusion” criterion, a disocclusion that can be performed by
inpainting. We look especially at a family of inpainting formulations that
includes the Chan and Shen Total Variation Inpainting (more precisely
a regularization of it). In this case, the optimization leads formally to a
coupled contour evolution equation, an inpainting equation, as well as a
linear PDE depending on the inpainting. The contour evolution is im-
plemented in the framework of level sets. Finally, the proposed method
is validated on various examples.

1 Introduction: Some Challenging Problems

The two following pictures represent first: the flag of the Greenland territory and
second: an object added on a smooth background via addition of the intensities,
similar to the presence of transparent layers, that we will call ”pseudo calcifica-
tion” in the sequel. A typical case would indeed be the one of an X-ray showing

a calcifit deposit on some soft tissue. Contour based active contour methods
can provide a segmentation of the circle, although sensitive to the initialization,
region based active contours using statistical parameters of intensity/color dis-
tributions for each regions, will fail to isolate the circle in the Greenland’s flag
from the rest of the image, since the two regions have the same statistics! In
the pseudocalcification image the difficulty comes also from hardly visible edge
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information, and the reality is often much worse than this artificial image, while
finding discriminating statistical invariants may also prove very difficult.

In an attempt to overcome these problems, we introduce a novel methodol-
ogy, within the framework of active contours. This belongs to the region based
family of active contours, but instead of considering that the image domain is
partitioned in two (or several regions), our approach consists in considering the
following problem: if the region Ω̃ containing the object of interest is known, and
if we have enough prior information on the type of background, can we recon-
struct the occluded background image? If we assume a positive answer to that
question, then we ask whether a given region Ω contains an object occluding the
background in the following way: if Ω delimits indeed the area occupied by a
foreground object, then there should be sufficiently large difference between the
observed image and the reconstructed one within this region. This leads natu-
rally to a variational problem: if Ω is a given region of the image plane D, u0 the
observed image, u(Ω) = I(u0, Ω) the reconstructed background and if we call
J(Ω) this background/foreground difference, we may look for the true region Ω̃
as an extremum for J(Ω). The goal of this work is to propose such a measure,
first in general terms, and then a specific instanciation based on a relatively sim-
ple variational inpainting formulation, which essentially corresponds to the TV
inpainting of Chan and Shen [8] and a simple measure for discrepancy between
two images, based on pixel value differences. From it, we derive a corresponding
active contour algorithm.

The paper is organized as follows. In section 2, we give a short review of active
contour algorithms. In section 3, we introduce an ”disocclusion quality measure”,
compute its Gâteaux derivative and deduce our inpainting based active contour
algorithm from it. Several experiments are presented in section 4 and we conclude
in section 5.

2 A Short Review of Active Contours

Since the seminal paper of Kass, Witkin and Terzopoulos [15], active contours, or
snakes, have been used rather extensively in computer vision and medical imag-
ing, for the purpose of segmentation, in order to overcome the locality problem
of edge detectors. They are curves with built in regularity properties and pref-
erences for edges in an image. Although very simple to implement, they suffer
among other of initialization problems and necessitates reparameterization. In
order to overcome initialization problems several solutions were proposed, in-
cluding balloon forces [10], gradient vector flows [25]. Geodesic active contours,
proposed independently by [7] and [16] introduced a parameterization indepen-
dent formulation. All these models deal only with contours, not with the regions
they separate. Based on a simplification of the Mumford-Shah segmentation
functional [18], Chan and Vese proposed a region based algorithm in [9], that
leads to a contour evolution coupled with the estimation of the mean values in
the regions delimited by this contour. More complex statistical descriptors have
been proposed instead of the mean, as histogram matching in [2]. In a series



From Inpainting to Active Contours 99

of papers, Paragios and Deriche proposed a new paradigm called Geodesic Ac-
tive Regions where both contour based and region based terms are used (see
for instance [20]). Many declinations on these ideas have been proposed in order
to tackle the variety of situation encontered in Computer Vision and Medical
Imaging. We note nevertheless that in region based active contours, the different
regions one want to recover form, together with their boundaries, a partition of
the image domain, and that the respective contents of these regions are usually
assumed to be independent of each others. While this assumption is sufficient in
many applications, the images shown in the previous section show that it may
fail.

3 Inpainting Based Active Contours

In this section we introduce background disocclusion ideas and a corresponding
variational formulation that will lead to an active contour evolution equation.

Let D be the image domain, ub the background image defined on D. Let
Ω̃ ⊂ D an unknown region and uf the foreground image with support Ω̃. We
suppose that the observed image u0 is obtained through a combination operation

u0 = C(ub, uf).

Our basic problem is to be able to determine, from u0, the region Ω̃ and infor-
mation on ub and uf . We now assume that if Ω̃ is known, we can confidently
estimate ub using an inpainting or disocclusion operation ub = I(u0, Ω̃). We
make the two following assumptions:

1. u0 and ub should differ significantly inside the foreground region Ω̃
2. the foreground region should be relatively small.

3.1 Variational Formulation

These two assumptions are used to form a ”disocclusion quality measure”, that
attributes a numerical score to a given region Ω ⊂ D belonging to an admissible
set P of regions of D,

J(Ω) =
∫

Ω

L (I(u0, Ω), u0, Ω) dx (1)

where the ”Lagrangian” L : R×R×P → R, (x, y, A) �→ L(x, y, A) incorporates
measures of the difference between x and y as well as measure of the size of its
last argument.

The true region Ω̃ should be an extremal point of J(Ω) and we therefore
search for a necessary condition for the functional J(Ω) to achieve an extremum.
In the sequel of this work, we consider the case of noisy additive signals u0 =
ub+uf+η, η being some noise, as it would be the case e.g. for X-rays or reflection.

With this additive model, an elementary way to measure the discrepancy
between u0 and ub in the region of inpainting consists in summing up a function
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of their pixelwise intensity differences, while a measure of the region can be given
by its area, or a function of it. A simple form for the function L incorpoarting
these measures is

L(x, y, A) =
|x− y|q
|A|p (2)

with |A| denoting the area of the set A, and p > 0, q = 1 or 2, and we therefore
want to maximize J(Ω). Another choice that we considered has been1

L(x, y, A) = ±x− y

|A|p . (3)

In both these situations, the resulting J(Ω) can be seen as a ”generalized ex-
pectation” of u0 − ub on Ω, an expectation that we want to maximize.

We follow Aubert et al. in [2] for the computation of J ′(Ω) using shape
derivative tools. Let Γ the boundary of Ω, N the inward normal to Γ , the
Gâteaux derivative of J(Ω) in the direction of V is, using the chain rule,

〈J(Ω)′,V〉 =
∫

Ω

Lx (I(u0, Ω), u0, Ω) Is(u0, Ω,V) dx

+
∫

Ω

Ls (I(u0, Ω), u0, Ω,V)) dx−
∫

Γ

L (I(u0, Ω), u0, Ω) (V ·N) da(x). (4)

In order to obtain a contour evolution equation, we need to explicit the first
term, involving the shape derivative Is(u0, Ω,V) of the inpainting with respect
to the inpainting domain, as well as the second term, involving the shape deriv-
ative of the Lagrangian L(x, y, A). We will introduce the inpainting operation
and compute the shape derivative related term in the next subsection and in
subsection 3.3 we will compute the shape derivative of the Lagrangian term and
the resulting curve evolution equation.

3.2 Inpainting and Related Shape Derivative

In this work, we have focused on a simple inpainting formulation: u = I(u0, Ω)
is defined as

u = arg.min
v

F(v, u0, Ω)

with
F(v, u0, Ω) =

λ

2

∫
D\Ω

(v − u0)2 +
∫

D

1
r
〈|∇v|〉rε dx (5)

where 〈t〉ε =
√

t2 + ε2 is sometimes referred to as the ”Japanese bracket” and
1 ≤ r ≤ 2. For r = 1, ε = 0, this corresponds to the Total Variation inpainting
of Chan and Shen [8]. We will assume nevertheless that ε > 0 when 1 ≤ r < 2,

1 Assumptions and rationale behind this choice are the following: we know a priori
that the sign of the difference ub −uf is constant on Ω̃. In that situation, if the noise
η is white, then it should be averaged out in J(Ω).
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this makes the solution of the minimization unique (standard arguments show
the uniqueness of the solution in the case r = 2 and a formal justification in our
settings for r and ε will be presented below) and allows to define the inpainting
operator (u0, Ω) �→ I(u0, Ω). This calculation leads, at least formally, to an
computable form for us(V) := Is(u0, Ω,V).

One must note that, in choosing such a simple inpainting, we implicitly as-
sume a high level of regularity for the partially unknown background, a potentially
important restriction for the domain of validity of the final algorithm.

We now perform the derivation of the inpainting related shape derivative. If
v is a test function on D, define f(τ) = F(u + τv). Since u is assumed to be a
minimizer for F , the first variation of F in the direction v, f ′(0), must vanish
and it provides the optimality condition

0 =
∫

D

(
λχD\Ω(u− u0)v+ 〈|∇u|〉r−2

ε ∇u · ∇v
)
dx (6)

=
∫

D

(
λχD\Ω(u−u0)− div

(
〈|∇u|〉r−2

ε ∇u
))︸ ︷︷ ︸

Fu(u,u0,Ω)

v dx (7)

= 〈Fu(u, u0, Ω), v〉 (8)

(χD\Ω denotes the characteristic function of D\Ω). The inpainting PDE is the
Euler-Lagrange equation

Fu(u, u0, Ω) = 0, (9)

extracted from equation (7), which allows to implicitly define u = I(u0, Ω) by

Fu(I(u0, Ω), u0, Ω) = 0.

Assuming that Fu is differentiable with respect to its first and last variables,
this expression allows to compute us(V) via the implicit function theorem:

us(V) = − (Fuu(u, u0, Ω))−1 Fus(u, u0, Ω,V) (10)

Fuu denoting the partial differential of Fu with respect to its first variable and
will be explicited below as a linear elliptic operator, while Fus denotes the shape
derivative of Fu and can be computed as

Fus(u, u0,V) = λ(u− u0)(V ·N)δΓ

δΓ being the Dirac distribution along Γ . The first term of the Gâteaux derivative
(4) can be rewritten

−λ

∫
D

χΩLx(u, u0, Ω)T ((u− u0)(V ·N)δΓ ) dx

where u = I(u0, Ω), T = (Fuu(u, u0, Ω))−1 and χΩ is the characteristic function
of Ω. Using the formal adjoint T ∗ of T , one rewrites this term as

−λ

∫
D

T ∗ (χΩLx(u, u0, Ω)) (u− u0)(V ·N)δΓ dx

and finally as the boundary integral
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−λ

∫
Γ

T ∗ (χΩLx(u, u0, Ω)) (u− u0)(V ·N)da(x).

We provide now an expression for the operator T = F−1
uu . Setting g(τ) = 〈Fu(u+

τw, u0, Ω), v〉 for a test funtion w on D, the operator Fuu is obtained from

〈Fuu(u, u0, Ω)(w), v〉 = g′(0).

A straightforward computation using for instance expression (6) gives

g′(0)=
∫

D

(
χD\Ωv w +∇vT A[∇u]∇w

)
dx (11)

=
∫

D

(
χD\Ωw − div(A[∇u]∇w)

)
v dx (12)

the last equality by integration by part and adequate boundary conditions, and
where A[∇u] is the 2× 2 symmetric matrix

〈|∇u|〉r−4
ε

⎛⎝(r−1)u2
x+u2

y+ε2 (r−2)uxuy

(r−2)uxuy (r−1)u2
y+u2

x+ε2

⎞⎠ (13)

which, under the assumptions we made on r and ε is positive and definite.
We can also note that the quadratic form 〈Fuu(u, u0, Ω)(v), v〉 is f ′′(0), the
second variation of F in the direction of v and is positive definite, as it can
be seen from expression (11).This means that the inpainting energy is strictly
convex, explaining the uniqueness of the minimizer. Expression (12) provides the
expression of Fuu(u, u0, Ω) as the differential operator

Fuu(u, u0, Ω)(w) = λχD\Ωw − div(A[∇u]∇w)

Positive definiteness also implies here that Fuu is formally invertible, and from
(11) and the symmetry of A[∇u], it is self-adjoint:

〈Fuu(u, u0, Ω)(w), v〉 = 〈w, Fuu(u, u0, Ω)(v)〉.

The operator T = F−1
uu which is consequently self-adjoint, T = T ∗, is given by

v �→ T (v), defined as the unique solution of

λχD\Ωw − div(A[∇u]∇w) = v. (14)

3.3 Curve Evolution and Level Set Formulation

Before being able to write the curve evolution equation, we need to compute
now the second term in equation (4). The shape derivative in the direction of V
of the area |Ω| is given by −

∫
Γ
(V ·N) da(x) and with the Lagrangian L being

defined by either (3) or (2), one gets∫
Ω

Ls(u, u0, Ω,V) dx = p
J(Ω)
|Ω|

∫
Γ

(V ·N) da(x).
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Collecting all these calculations ,we find that the Gâteaux derivative 〈J(Ω)′,V〉
is given by

∫
Γ

F (V ·N)da(x) where F is

p
J(Ω)
|Ω| − λ(u − u0)T (χΩLx(u, u0, Ω)) + L(u, u0, Ω) (15)

and since our goal is to maximize the ”disocclusion criterion” J(Ω), this leads to
the following evolution equation ∂Γ

∂t = FN. This curve evolution is rewritten into
the Osher-Sethian framework of level sets [24] as ϕt = F |∇ϕ| where ϕ represents
implicitly Γ (t) and Ω(t) via Γ (t) = {ϕ(x, t) = 0} and Ω(t) = {ϕ(x, t) < 0}.

3.4 Numerics

A first order space convex scheme is used to solve this equation. Using the
notations of [24], it is

ϕn+1
ij = ϕn

ij + Δt
[
max(Fn

ij , 0)∇+ + min(Fn
ij , 0)∇−]

.

This leads to the following algorithm:

1. Choose an original contour Γ 0, compute ϕ0 as the signed distance func-
tion ϕ0(x) = distΓ 0(x), and Ω0 = {x, H(−ϕ0(x)) = 1}, where H is the
1-dimensional Heaviside function

2. for i = 0 to N − 1 or a convergence condition has been fulfilled
(a) compute the inpainting un = I(u0, Ω

n) and T (χΩLx(un, u0, Ω
n)) and

the disocclusion measure J(Ωn).
(b) compte Fn from the previous calculations
(c) compute ϕn+1 withe the above scheme
(d) extract Γn+1 and Ωn+1 from it
(e) reinitialize ϕn+1 as a signed distance ϕn+1(x) = distΓ n+1(x).

3. return uN and ΩN

The time step Δt is chosen at each iterations as 1/‖Fn‖∞. The numerical scheme
we have used for the inpainting I(u0, Ω

n) follows closely the discretization pro-
posed by Chan and Shen in [8]. The computation of T (χΩLx(un, u0, Ω

n)) as the
solution w of the PDE

λχD\Ωw − div(A[∇un]∇w) = χΩLx(un, u0, Ω
n) (16)

requires some care. Indeed, apart from the trivial case r = 2 in (13) where A[∇un]
reduces to the 2 × 2 identity matrix, the divergence term will normally contain
spatial cross-derivatives and thus needs special attention for the discretization.
For that purpose we have used the scheme proposed by Rybak in [23], keeping
Chan and Shen discretization for the derivatives of un. With this, the linear
system resulting from (16) is solved using a Gauss-Seidel scheme.

Finally, an important point to mention is that the Heaviside function used
is implemented with almost no regularization, as opposed to way it is handled
in the level set implementation of most region based algorithms. Too much reg-
ularization would biase the inpainting.
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4 Experiments

Our experiments have been performed on synthetic as well as real data. They
present an increasing level of complexity in the image content. The inpainting
used has been the regularized Total Variation one, i.e. r = 1 in the energy (5),
and the function L being the one given by (2), with q = 1.0.

Experiment 1. Four black squares on a white background. The parameters are
λ = 1, p = 0.25. This is illustrated in the left part of Fig. 1, where the first row
shows a snapshot of the contour evolution at iterations 1, 7, 15 and 30, the sec-
ond row shows the corresponding domains and the last row shows the inpainting
results.

Experiment 2. Dark non convex object on a light background with 30% added
Gaussian noise. In this experiment, λ = 0.1, p = 0.55. This is illustrated in the
right part of Fig. 1 The first row shows a snapshot of the contour evolution at
iterations 1, 10, 20 and 30, the second row shows the corresponding domains and
the last one the inpaintings.

Experiment 3. The next experiment uses the same image as experiment 2. It
illustrates some stability with respect to the initial contour, as well as the role
of the area penalizer exponent p in L and is illustrated in Fig. 2. We ran two
experiments, the first with a value of p = 0.55, as in the previous case and the
second with a value of p = 0.60. In both cases, the λ weight in the inpainting was
set to 0.1. In the first case, a correct segmentation has been achieved, while in
the second, the right part of the horizontal ellipse could not be fully recovered.

Experiment 4. The “pseudo calcification” image. This image is made of a
smooth background (a 4th order polynomial in the image coordinates), with an
object added (by adding intensity values). While the intensities in background
are in the range [0,1], the original intensity of the added object is constant,
equal to 0.065. Although we were able to produce some good quality measure
using the function L given by (3), it proved difficult to control. So we used the
same function as for the other examples, with p = 0.5. In order to prevent the
inpainter/denoiser to smooth too much the background, we chose λ = 8 in (5).
This experiment is illustrated in Fig. 3. The first row shows the original ob-
ject and the pseudo calcification. The two next rows show snapshots of contour
evolution at different iterations, for two different initializations. The second ini-
tialization, while ”more creative” is also closer to the true contour and allows
for a much faster convergence (260 iterations in the first case, 50 in the second).

Experiment 5. The next experiment presented uses Greenland’s flag with
added Gaussian noise, with a standard deviation of 50% of the intensity range
of the image. We used the function L with lambda = 0.1 and p = 0.85 this time.
Results are shown in Fig. 4, where the evolution of the disocclusion measure is
also plotted.
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Experiment 6. The last experiment presented here is somewhat an attempt
at the impossible. Indeed, using such a simple inpainting method, the algorithm
is normally targeted to images with relatively simple content, at least, with a
reasonable smoothness assumption. Nevertheless to test the possibilities of our
method, we have used a rather complex input image, the third frame from the
Ettlinger-Tor sequence 2, frequently used in optical flow estimation. The re-
sult presented here are certainly of far lesser quality than some that can be

Fig. 1. Experiments 1 and 2. See text.

Fig. 2. Experiment 3. See text.

obtained with state of the art algorithms, but show that our method can produce
meaningful results, even when the background smoothness assumption is largely
violated in this case. The parameters used here where λ = 0.5 and p = 2−7, a
very small value. This experiment is illustrated in Fig. 5.

2 This sequence is copyright (C) 1998 by H. H Nagel, KOGS/IAKS Universität Karl-
sruhe.
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Fig. 3. Experiment 4. See text.
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Fig. 4. Experiment 5. See text.

Fig. 5. Experiment 6. See text.
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5 Summary and Conclusion

In this paper, we have presented a novel approach for region based active con-
tour segmentation, using the idea of optimal background disocclusion, performed
by an inpainting algorithm, which led to a generic variational formulation. We
have considered a simple variational algorithm and have derived a contour evo-
lution equation, which has been illustrated on several examples. The resulting
algorithm is computationally expensive, since several partial differential equa-
tions have to be solved at each iteration. Depending on the size and complexity
of the input, it took up to 20mn! There is clearly space here for optimization.
In particular, we are working on implementing multigrid solvers for the elliptic
equations encountered, multigrid approaches can be extremely efficient, see for
instance the recent paper of Bruhn et al. in [5]. Other directions of research
are the use of different ”Lagrangians” for the disocclusion measures, as well as
more sophisticated inpainting algorithms, where we can nevertheless maintain a
reasonable efficiency.
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Abstract. All previous geometric active contour models that have been
formulated as gradient flows of various energies use the same L2-type
inner product to define the notion of gradient. Recent work has shown
that this inner product induces a pathological Riemannian metric on
the space of smooth curves. However, there are also undesirable features
associated with the gradient flows that this inner product induces. In
this paper, we reformulate the generic geometric active contour model by
redefining the notion of gradient in accordance with Sobolev-type inner
products. We call the resulting flows Sobolev active contours. Sobolev
metrics induce favorable regularity properties in their gradient flows.
In addition, Sobolev active contours favor global translations, but are
not restricted to such motions. This is particularly useful in tracking
applications. We demonstrate the general methodology by reformulating
some standard edge-based and region-based active contour models as
Sobolev active contours and show the substantial improvements gained
in segmentation and tracking applications.

1 Introduction

Active contours, introduced by Kass et al. [1], have been widely used for the
segmentation problem. One undesirable feature of Kass’s model is that the en-
ergy used to derive a flow is dependent on parametrization. Formulations for
geometric energies, which do not depend on the particular parametrization of
the curve, were later introduced for edge-based active contours [2,3] and region-
based active contours [4,5,6]. In order to define the notion of gradient of such
energies, an inner product on the set of perturbations of a curve is needed. All
of these previous works on geometric active contours use the same geometric
L2-type inner product, which we refer to as H0, to define a gradient. However,
recent work in [7,8] has shown that the Riemannian metric on the space of curves
induced by the H0 inner product is pathological.

In addition to the pathologies of the Riemannian structure induced by H0,
there are also undesirable features of H0 gradient flows, some of which are listed
below.

- First, there are no regularity terms in the definition of the H0 inner product.
That is, there is nothing in the definition of H0 that discourages flows that are
not smooth in the space of curves. By smooth in the spaces of curves, we mean
that the surface formed by plotting the evolving curve as a function of time
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is smooth. Thus, when energies are designed to depend on the image that is
to be segmented, the H0 gradient is very sensitive to noise in the image. As a
result, the curve becomes unsmooth instantly. Therefore, in geometric active
contours models, a penalty on the curve’s length is added to keep the curve
smooth in addition to keeping the variational problem well-posed. However,
this changes the energy that is being optimized.

- Second, H0 gradients, evaluated at a particular point on the curve, depend
locally on derivatives of the curve. Therefore, as the curve becomes unsmooth,
as mentioned above, the derivative estimates become inaccurate, and thus,
the curve evolution becomes inaccurate. Moreover, for region-based and edge-
based active contours, the H0 gradient at a particular point on the curve de-
pends locally on image data at the particular point. Although region-based
energies may depend on global statistics, such as means, the H0 gradient
still depends on local image data. The H0 gradient of image dependent en-
ergies “encourages” points on the evolving curve to move “independently”
to decrease energy rather than encouraging the points to move collectively.
This restricts the gradient at a particular point from “seeing” information
located at other points of the curve, which implies sensitivity to noise and
local features.

- Third, all geometric active contours require that the unit normal to the evolv-
ing curve be defined. As such, the evolution does not make sense for polygons.
Moreover, since in general, a H0 active contour does not remain smooth, one
needs viscosity theory to define the flow.

- Fourth, if the energy depends on n derivatives of the curve, then the H0 gra-
dient has 2n derivatives of the curve. Since the corresponding level set flows
with higher than two derivatives are not known to have a maximum principle,
level set methods [9] cannot be used. This forces one to use particle methods
to implement the flow. However, flows with higher than two derivatives are
generally difficult to implement because of numerical artifacts.

- Lastly, as a specific example, the gradient ascent for arclength, i.e., backward
heat flow, is not stable. This is quite odd in an intuitive manner because
there is nothing in the definition of length itself that indicates that a flow to
increase length is unstable.
In this paper, we consider using inner products arising from Sobolev spaces

to define gradients. Note that a first order Sobolev-like inner product defined
on an equivalence class with respect to a group has been used in the context of
shape analysis [10], but not for defining gradient flows.

2 General Theory

2.1 Structure on the Space of Curves

Let C denote the set of smooth embedded curves in R
2, which is a differentiable

manifold [11]. For C ∈ C, we denote by TCC the tangent space of C at C, which
is isomorphic to the set of smooth perturbations of the form h : S1 → R2 where
S1 denotes the circle. We now define inner products on TCC.
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Definition 1. Let C ∈ C, L be the length of C, and h, k ∈ TCC. Let λ > 0. We
assume h and k are parametrized by the arclength parameter of C.

1. 〈h, k〉H0 := 1
L

∫ L

0 h(s) · k(s)ds
2. 〈h, k〉H1 := 〈h, k〉H0 + λL2 〈h′, k′〉H0

3. 〈h, k〉H̃1 := h · k + λL2 〈h′, k′〉H0

where h := 1
L

∫ L

0 h(s)ds, and the derivatives are with respect to arclength.

Note that we have introduced length dependent scale factors for convenience
of later computations. It is easy to verify that the above definitions are inner
products. One can easily generalize the previous definitions to H̃n by simply
replacing the first derivative with the nth derivative, and to Hn by adding in
components of the form

〈
h(m), k(m)

〉
H0 where m ≤ n. Also, other versions of

H1 and H̃1are possible [8]. We now define the notion of gradient of a functional
E : C → R.

Definition 2. Let E : C → R.

1. If C ∈ C and h ∈ TCC, then the variation of E is dE(C)·h= d
dtE(C + th)

∣∣
t=0,

where (C + th)(θ) := C(θ) + th(θ) and θ ∈ S1.
2. Assume 〈, 〉C is an inner product on TCC. The gradient of E is a vector field
∇E(C) ∈ TCC that satisfies dE(C) · h = 〈h,∇E(C)〉C for all h ∈ TCC.

For each C ∈ C, note that dE(C) is a linear operator on TCC. If dE(C) is
bounded, then the notion of operator norm can be defined. The operator norm
of dE(C) with respect to an inner product 〈, 〉C , which induces a norm ‖ · ‖C , is

‖dE(C)‖ = sup
h∈TCC\{0}

|dE(C) · h|
‖h‖C

. (1)

If the gradient of E exists, then by the Cauchy-Schwartz inequality, we have
that h = ∇E(C) attains the supremum on the right hand side of (1). Note for
λ → +∞, translations have norm approaching zero with respect to the norm
induced by H1 and H̃1. In light of the interpretation of the gradient as the
perturbation that attains the supremum in (1), it follows that translations are
favored for gradients in H1 and H̃1 as λ → +∞ if they reduce energy.

2.2 Relation Between H1 and H̃1

We show that the norms associated with the inner products H1 and H̃1, i.e.,

‖h‖H1 =

√∫ L

0

1
L
|h(s)|2 + λL|h′(s)|2ds, ‖h‖H̃1 =

√
|h|2 + λL

∫ L

0
|h′(s)|2ds

are equivalent.
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We first derive a simple Poincaré inequality: from h(u) − h(v) =
∫ u

v
h′(s)ds

we derive that supu |h(u)− h| ≤
∫ L

0 |h
′(s)|ds, and then√∫ L

0
|h(s)− h|2ds ≤

√
L sup

u
|h(u)−h| ≤

√
L

∫ L

0
|h′(s)|ds ≤ L

√∫ L

0
|h′(s)|2ds,

which is the Poincaré inequality.
We now prove the equivalence of the two norms. By Hölder’s inequality, we

have that |h|2 ≤ 1
L

∫ L

0 |h(s)|2ds so that ‖h‖H̃1 ≤ ‖h‖H1 . On the other hand,
note that, 1

L

∫ L

0 |h(s)− h|2ds = 1
L

∫ L

0 |h(s)|2ds− |h|2, so that

‖h‖2H1 =
∫ L

0

1
L
|h(s)|2 + λL|h′(s)|2ds

=
1
L

∫ L

0
|h(s)− h|2ds +

∫ L

0
λL|h′(s)|2ds + |h|2

≤ |h|2 + L(1 + λ)
∫ L

0
|h′(s)|2ds ≤ (1 ∨ (L2(1 + λ)))‖h‖2

H̃1

where ∨ denotes maximum. Note that we have not established any relation
between the geometry of the inner products H1 and H̃1; however, in the next
sections, we show that the gradients from H1 and H̃1 have similar properties.

2.3 Comment on Hn for n ≥ 2

As alluded to in Section 2.1, translations are favored for H1 and H̃1 gradients
when λ → +∞. This can be quite important for tracking applications where the
object to be tracked is usually translating. One may wonder whether using higher
order Sobolev inner products, Hn and H̃n for n ≥ 2, will favor higher order
polynomial motions of degree n. Note however, that any polynomial perturbation
defined on S1, the circle, must be constant to conform to periodic boundary
conditions. Thus, higher than order n = 1 Sobolev gradients also favor just
translations. In this sense, there is not an advantage of using higher order Sobolev
gradients. However, one gains added regularity of the gradient flow in using
higher order Sobolev gradients.

3 H1 and H̃1 Gradients

In this section, we describe how to compute first order Sobolev gradients from
the H0 gradient. Denote by f = ∇H0 E(C) the gradient of E with respect to the
H0 inner product at C. We would like to compute first the H1 gradient at C.
Assuming g = ∇H1 E(C) exists, we have for all h ∈ TCC,

dE(C) · h = 〈h, g〉H0 + λL2 〈h′, g′〉H0 =
〈
h, g − λL2g′′

〉
H0



Sobolev Active Contours 113

where we have integrated by parts and noted that we have periodic boundary
conditions. Since gradients are unique (if they exist), in particular, the H0 is
unique, we must have that

f(s) = g(s)− λL2g′′(s) where s ∈ [0, L]. (2)

Note that this is an ODE defined on [0, L] with periodic boundary conditions,
that is, all derivatives match on the boundary of [0, L].

Now we take a similar approach to compute the H̃1 gradient. Assuming
g = ∇H̃1E(C) exists, we have

dE(C) · h = h · g + λL2 〈h′, g′〉H0 =
〈
h, g − λL2g′′

〉
H0 .

Again by uniqueness, we have that f = g − λL2g′′. Noting periodic boundary
conditions, we have that g = f , and so

f(s) = f − λL2g′′(s) where s ∈ [0, L] (3)

and we have periodic boundary conditions.

3.1 Solving the ODEs

We want to solve first the ODE (2) for g. It suffices to solve (2) with the
boundary conditions g(0) = g(L) and g′(0) = g′(L). One can show that g(s) =∫ L

0 kλ(s, ŝ)f(ŝ)dŝ, where kλ : [0, L]× [0, L]→ R satisfies the following conditions
for all s, ŝ ∈ (0, L)

kλ(s, ŝ)− λL2 ∂2kλ

∂s2 (s, ŝ) = δ(s− ŝ) (4a)

kλ(0, ŝ) = kλ(L, ŝ); ∂skλ(0, ŝ) = ∂skλ(L, ŝ); kλ(ŝ+, ŝ) = kλ(ŝ−, ŝ), (4b)

and δ denotes the Dirac distribution. It can be shown that the solution to the
previous system is kλ(s, ŝ) = Kλ(|s− ŝ|), where Kλ : R → R is given by

Kλ(s) =
cosh

(
s− L

2√
λL

)
2L
√

λ sinh
(

1
2
√

λ

) , for s ∈ [0, L], (5)

and Kλ is periodically extended to all of R. We may write

∇H1E(s) =
∫

C

Kλ(ŝ− s)∇H0E(ŝ)dŝ = (Kλ ∗ ∇H0E)(s) (6)

where the integral over C denotes any range of ŝ that corresponds to one full
period around the curve C (e.g. [0,L], [–L,0], [–L/2,L/2], etc.).

We now solve the second ODE (3). It suffices to solve (3) with the boundary
conditions g(0) = g(L), g′(0) = g′(L), and the relation f = g. Integrating (3)
twice yields

g(s) = g(0) + sg′(0)− 1
λL2

∫ s

0
(s− ŝ)(f(ŝ)− f)dŝ. (7)



114 G. Sundaramoorthi, A. Yezzi, and A. Mennucci

Using (7), applying the boundary conditions, and noting that g = f , after some
manipulation, yields

g′(0) = − 1
λL3

∫ L

0
s(f(s)− f)ds and g(0) =

∫ L

0
f(s)K̃λ(s)ds (8)

where the kernel function K̃λ is given by

K̃λ(s) =
1
L

(
1 +

(s/L)2 − (s/L) + 1/6
2λ

)
, s ∈ [0, L]. (9)

Note that K̃λ(0) = K̃λ(L) and thus we may periodically extend K̃λ as before.
In this case, we may rewrite, g(0) =

∫
C f(ŝ)K̃λ(ŝ)dŝ, where, again, the integral

over C denotes any range of ŝ that corresponds to one full period over C. Now
if we shift the arclength parameterization of the curve, we obtain a convolution
formula for g at any point s. Therefore,

∇H̃1E(s) =
∫

C

K̃λ(ŝ− s)∇H0E(ŝ)dŝ = (K̃λ ∗ ∇H0E)(s). (10)

3.2 Properties of the Kernels

Note the following formal properties of Kλ and K̃λ:

K ′′
λ(s) =

1
λL2 (Kλ − δ(s)) and K̃ ′′

λ(s) =
1

λL2

(
1
L
− δ(s)

)
, s ∈ [0, L). (11)

The first property is just the relation in (4a), and the second is obtained through
differentiation of K̃λ. Using these relations, it is easy to see that Kλ∗f and K̃λ∗f
formally solve (2) and (3), respectively. Next, note that∫

C

Kλ(ŝ)dŝ = 1 and
∫

C

K̃λ(ŝ)dŝ = 1 (12)

for all λ > 0. Also observe that Kλ ≥ 0 for all λ > 0, and that K̃λ ≥ 0 only
when λ ≥ 1/24. Finally, it is easy to verify that as λ → +∞, Kλ → 1/L and
K̃λ → 1/L. See Fig. 1 for plots of Kλ and K̃λ.

3.3 Properties of Sobolev Gradients

First note, from formulas (6) and (10), that the H1 and H̃1 gradients are geomet-
ric, i.e., they do not depend on a particular parametrization chosen for the curve.
This is also evident from the definition of these inner products. The formulas (6)
and (10) show that there may be a tangential component of the gradients; but
these tangential components may be ignored when considering gradient flows.
This is different from H0 where if the energy is geometric, then the gradient will
have only a normal component.
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Fig. 1. Plots of Kλ (left) and K̃λ (right) for various λ with L = 1. The plots show the
kernels over two periods.

Because H1 and H̃1 gradients are given by integrals of H0, given in formu-
las (6) and (10), integration by parts and the relations in (11) imply that two
derivatives of the curve can be moved to derivatives on the kernels. This means
that H1 and H̃1 gradients involve two fewer derivatives of the curve than H0

gradients involve. Note that H0 gradients have twice the number of derivatives
of the curve as is defined in the energy E to be optimized. Thus, fourth order
evolution equations of curves in H0 may reduce to second order equations in H1

and H̃1. A similar remark can be made for Hn and H̃n gradients; these gradients
require 2n less derivatives of the curve than the H0 gradient requires.

The property that the integral of both the kernels is unity (12) implies that
the H1 gradient can be interpreted as a weighted average of the H0 gradient;
the same interpretation holds for H̃1 when λ > 1/24. In light of this weighted
average interpretation, we see that Sobolev gradients are less sensitive to noise
and local features than H0 gradients are. Moreover, the property that the kernels
approach 1/L as λ → +∞ shows that, in this case, the H1 and H̃1 gradients
approach pure translations equal to the average value of the H0 gradient, as
expected from the interpretation of gradient noted in Section 2.1.

3.4 Advantages of H̃1 over H1

There is a computational advantage of using the H̃1 gradient as opposed to
the H1 gradient since the formulas (7), (8) give the H̃1 gradient as a single
integral without convolution, as opposed to the necessary convolution for H1.
Another advantage of H̃1 over H1 is that we can eliminate the dependence on
the parameter λ when implementing H̃1 gradient flows. Observe from the kernel
definition (9) that K̃λ is a sum of two terms: one that depends on λ and another
that does not. Thus, the H̃1 gradient is a sum of two components: one that
depends on λ by a simple scale factor, and another that is independent of λ. The
component that does not depend on λ is ∇H0E, which is a just a translation.
The other component is a complex deformation. An algorithm to implement
the H̃1 gradient flow is to first evolve the curve by the translation component
until this component becomes zero, then to evolve the curve by the deformation
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component, and the process is repeated until convergence. Note that λ does
not need to be chosen for evolving the deformation component because λ only
changes the speed of the curve, not the geometry. Therefore, this algorithm also
gives a way of separating the (rigid) motion of the curve from the deformation.
Separating the motion from deformation has particular importance in tracking
applications [12].

4 Some Sobolev Gradient Flows

In this section, we simplify the formulas (6) and (10) for some common geometric
energies, note some interesting properties, and compare these with the usual H0

gradients. In what follows, we use K to denote either the kernel (5) or (9), and
∇1 will denote either the H1 or H̃1 gradient; when the distinction is needed, we
will use the subscript λ on the kernels, and write H1 or H̃1.

4.1 Length and Weighted Length

We consider the geodesic active contour model [2,3]. The energy is E(C) =∫
C

φ(C(s))ds where φ : R2 → R+. Then the gradient with respect to H0 is
∇H0E = L(∇φ · N )N −LφκN where N is the unit inward normal, and κ is the
curvature. Let us first note that ∇H0E = L∇φ − L(φC′)′. Integrating by parts
we find that

1
L
∇1E = ∇φ ∗K − (φC′)′ ∗K = ∇φ ∗K − (φsC) ∗K ′ − (φC) ∗K ′′,

where φs(ŝ) := d/dŝφ(C(ŝ)). Using the relations in (11), we find that

∇H̃1E =
φC − φC

λL
− L(φsC) ∗ K̃ ′

λ + L∇φ ∗ K̃λ. (13)

Of particular interest is when φ = 1, that is E = L, the length of the
curve. We see that ∇H̃1L = C−C

λL . It is interesting to notice that the H1 and
H̃1 gradient flows are stable for both ascent and descent while the H0 gradient
flow is only stable for descent. Note that the H̃1 gradient flow constitutes a
simple rescaling of the curve about its centroid. While the H0 gradient descent
smooths the curve, the H̃1 gradient descent (or ascent) has neither a beneficial
nor a detrimental effect on the regularity of the curve.

4.2 Area and Weighted Area

We consider region-based active contour models [5,6]. The energy is E(C) =∫
Cin

φdA where Cin denotes the region enclosed by the closed curve C, φ : R2 →
R and dA is the area form. The gradient with respect to H0 is∇H0E = −LφN =
−LφJC′ and J is a rotation by 90o matrix. Integrating by parts we find that

1
L
∇1E = −(φJC′) ∗K = (φsJC) ∗K + (φJC) ∗K ′. (14)
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For the H̃1 gradient, this simplifies to

∇H̃1E =
J

λL2

∫ L

0

(
φC(· + ŝ)− φC

)
ŝ dŝ + (φsJC) ∗ K̃λ. (15)

Of particular interest is when φ = 1, that is E = A, the area enclosed
by the curve. We see that ∇1A = (JC) ∗ K ′. This simplifies to the gradient
ascent/descent

Ct(s) = ± J

λL2

∫ L

0

(
C(s + ŝ)− C

)
ŝdŝ (16)

in the H̃1 gradient case.

4.3 Elastic Energy

Consider the geometric version of elastic energy defined by E(C) =
∫

C κ2ds =∫
C
‖C′′‖2ds. It can be shown that the H0 gradient is ∇H0 E = L(2C(3) + 3(C′′ ·

C′′)C′)′. Thus, we find that

1
L
∇1E =

(
2C(3) + 3(C′′ · C′′)C′

)′
∗K = 2C′′ ∗K ′′ − 3(C′′ · C′′)C′ ∗K ′.

For the kernel K̃λ, this simplifies to

1
L
∇H̃1E = −2C′′

λL2 − 3(C′′ · C′′)C′ ∗ K̃ ′
λ, (17)

and thus, the gradient descent, up to a scale factor depending on λ and L, is

Ct = Css +
3
2

∫ s+L

s

(Css · Css)Cs

(
ŝ− s

L
− 1

2

)
dŝ. (18)

4.4 Comparison of H0 and H1, H̃1

We notice several advantages of the gradients flows for H1 and H̃1 gradients
as compared with H0 gradients. First note that both the expressions for edge-
based and region-based active contour gradients with respect to H1 and H̃1 (13),
(14) do not involve any derivatives of the curve. This is in contrast to H0, which
requires two derivatives for geodesic active contours and one derivative for region-
based active contours. Hence, the Sobolev flows are defined for polygons, without
the use of viscosity theory. Note that the expression in (13) does not require any
more derivatives of φ than the expression for H0 does. This is not the case for
(14), which requires a derivative of φ. However, since φs is contained within
a convolution, the possible noise generated by φs is mitigated. Alternatively,
the original expressions (6) and (10) may be used if a derivative of φ is not
desired to be computed. Notice the expressions of Sobolev gradients for the
elastic energy (17) only require two derivatives of the curve; this is in contrast to
the H0 gradient, which requires four derivatives of the curve. Since there is no
maximum principle for fourth order equations, the H0 gradient of elastic energy
cannot be implemented using level set methods. Thus, a particle method must
be used; however, this is prone to numerical problems.
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5 Simulations

In this section, we show some simulations of Sobolev active contours used for
segmentation and tracking. In all the simulations done below, the results for
the Sobolev active contours are done with the H1 inner product with λ = 10,
although higher λ produces similar results with higher regularity. Using H̃1 gives
the same results as to what are shown.

Figure 2 shows snapshots of evolutions that use the edge-based energy [2,3]
for both the H0 (top) and the H1 (bottom) active contours to segment a noisy
image. The initial contour is a shifted version of the true object with a slightly
different radius. Notice that the H0 active contour learns local features instantly,
and therefore becomes stuck at an undesirable local minimum. On the other
hand, the Sobolev H1 active contour moves according to a global motion first,
then when it cannot reduce energy by moving in a global manner, it begins to
learn local features. As a result, the Sobolev active contour overcomes any unde-
sirable local minima created by the noise. Figure 3 shows a similar experiment

Fig. 2. Segmentation of a noisy image using edge-based H0 active contour (top), and
edge-based Sobolev active contour (bottom)

using the region-based energy [6]. The top row of the figure shows the result us-
ing the H0 active contour. Note that a curvature term is added to keep the curve
smooth. A curvature-data term ratio of 2000 to 1 is used for the H0 active con-
tour. Notice that although global statistics are used to define the energy, points
on the H0 active contour move independently without knowledge of other points
on the curve. Thus, the curve becomes unsmooth instantly, being susceptible to
local features, even though a high curvature weighting is used. The flow con-
verges to an undesirable local minimum. On the contrary, the H1 flow preserves
the shape of the initial contour as it translates until translations are no longer
favorable to reduce energy. Then the contour deforms from a square shape to
a circular shape as fine scale features of the image are learned. Note that there
was no curvature term added to the Sobolev active contour; the regularity is
achieved solely through the inner product definition.

Figures 4 and 5 show examples of tracking a square that translates using
both H0 active contours (in red) and Sobolev active contours (in blue). The
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Fig. 3. Segmentation of a noisy image using region-based H0 active contour with a
length penalty (top), and region-based Sobolev active contour (bottom)

segmentation result from the previous frame is used as the initial contour for
the next frame. The segmentation evolutions are run until convergence of both
contours. The first example in Fig. 4 shows the result using the edge-based
energy. The second example in Fig. 5 shows the result using the region-based
Chan-Vese energy. A curvature regularizer for the H0 region-based active contour
at a ratio of 1000 to 1 was used to compensate for noise. Notice the H0 active
contours becomes stuck in a undesirable local minima after the initial movement
of the object, and soon lose track of the object. The Sobolev active contours do
not have this problem and successfully track the object.

Fig. 4. Tracking a moving square in a noisy environment using edge-based H0 active
contour (red) and Sobolev active contour (blue)

6 Conclusion

We have introduced using Sobolev inner products on the set of perturbations
of a curve rather than the traditional H0 inner product used in all previous
works on geometric active contours. We have demonstrated the general method-
ology for computing Sobolev gradients, and derived various flows with respect
to Sobolev inner products. We have shown that Sobolev flows are smooth in
the space of curves, are not as dependent on local image information as H0
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Fig. 5. Tracking a moving square in a noisy environment using region-based H0 active
contour (red) and Sobolev active contour (blue)

flows, are global motions which deform locally after moving globally, and do not
require derivatives of the curve to be defined for region-based and edge-based
energies.
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Abstract. Current state-of-the-art methods in variational image segmentation
using level set methods are able to robustly segment complex textured images
in an unsupervised manner. In recent work, [18,19] we have explored the po-
tential of AM-FM features for driving the unsupervised segmentation of a wide
variety of textured images. Our first contribution in this work is at the feature
extraction level, where we introduce a regularized approach to the demodulation
of the AM-FM -modelled signals. By replacing the cascade of multiband filtering
and subsequent differentiation with analytically derived equivalent filtering oper-
ations, increased noise-robustness can be achieved, while discretization problems
in the implementation of the demodulation algorithm are alleviated. Our second
contribution is based on a generative model we have recently proposed [18,20]
that offers a measure related to the local prominence of a specific class of fea-
tures, like edges and textures. The introduction of these measures as weighting
terms in the evolution equations facilitates the fusion of different cues in a simple
and efficient manner. Our systematic evaluation on the Berkeley segmentation
benchmark demonstrates that this fusion method offers improved results when
compared to our previous work as well as current state-of-the-art methods.

1 Introduction

The segmentation of textured images is a long standing problem in computer vision
that has been addressed in the framework of variational methods using both boundary-
and region-based techniques. The latter are commonly held as more appropriate for this
specific problem due to the increased robustness offered by region-based criteria and
the difficulty of texture boundary localization.

In the region-based scenario, informative features are used to drive the evolution
process; image intensity on its own is a poor cue, since textured images are inherently
of varying intensity. Multiband image filtering with filterbanks is commonly used as a
preprocessing step that facilitates theextraction of texture informationresidingatdifferent
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frequency channels. Even though the outputs of such a filterbank may accurately describe
the texture signal, their high dimensionality can lead to suboptimal segmentations.

In recent work [18,19,37] the potential of modulation features derived using the
AM-FM model of Bovik and coworkers [2,11,10,12] in driving the unsupervised seg-
mentation of textured images has been explored. The low-dimensional texture represen-
tation resulting from Dominant Component Analysis (DCA) [10,12] offers information
concerning the local contrast, scale and orientation of the texture signal and can be in-
terpreted as describing the sinusoidal signal that best models a texture locally [18,20].

A problem faced by our algorithm is that at smooth areas texture features like orien-
tation are meaningless and introduce erroneous information in the feature vector, while
at object borders texture features indicate the presence of a textured region, leading
again to suboptimal solutions. Further, the demodulation algorithm used for feature ex-
traction includes high-order image derivatives, that introduce increased noise sensitivity
and are not uniquely defined for discrete-time signals.

In this work, our contribution is twofold: first we introduce a regularized version
of the algorithm used for feature extraction, involving generalized Gabor filtering and
treating errors from inefficient discrete differentiations. Second, we propose a modi-
fication of the original Region Competition/ Geodesic Active Regions evolution rule
that takes into account the locally estimated confidence in any of the low-dimensional
modulation-based features. For this we build upon recent work [18,20] and provide
probabilistic terms quantifying the confidence assigned to the extracted features, rely-
ing on a detection theoretic interpretation of the DCA algorithm.

Section II describes previous work and provides the background for later sections.
In Section III the regularized demodulation algorithm is described, while Section IV
presents the cue integration algorithm proposed. In Section V we demonstrate the merits
of using the fused scheme and compare both visually and quantitatively our method’s
results to those obtained using current state-of-the-art features [38].

2 Previous Work: AM-FM Models and Unsupervised
Segmentation Methods

2.1 AM-FM Texture Modeling

According to the multicomponent AM-FM model [10], a textured image can be mod-
elled as the superposition of sinusoidal components:

I(x, y) =
K∑

k=1

ak(x, y) cos(φk(x, y)), ωk(x, y) = ∇φk(x, y), (1)

where each of the K components is a non-stationary 2-D AM-FM signal, with instan-
taneous amplitude ak(x, y) and instantaneous frequency ωk. The decomposition of an
image in terms of this expression is an ill-posed problem, since one can devise an infin-
ity of AM and FM signals yielding the same image. A separation into well-behaved in-
dividual AM-FM components can be accomplished by filtering with a multiband Gabor
filterbank [1,7]; the output of each filter can then be represented as a mono-component
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AM-FM signal with narrowband modulation components, that lend themselves to effi-
cient demodulation algorithms and are intuitively interpretable. Specifically if f(x, y)
is a mono-component 2-D AM-FM signal

f(x, y) = a(x, y) cos(φ(x, y)), (2)

its spatially-varying amplitude a(x, y) can be interpreted as modeling local image con-
trast while the instantaneous frequency vector ω(x, y) = ∇φ(x, y) describes locally
emergent spatial frequencies [2,12]. Efficient estimation of the modulation components
of the 2D AM-FM signals can be accomplished via the multidimensional energy sep-
aration algorithm [24] that uses a multidimensional energy operator [3]: Let f(x, y)
be a twice-differentiable continuous-space real-valued input function. The 2D energy
operator Φ is defined by

Φ(f)(x, y) � ‖∇f(x, y)‖2 − f(x, y)∇2f(x, y) (3)

Let now f be a 2D spatial AM-FM signal as in (2). Under certain assumptions on the
amplitude and frequency variations [24], applying Φ to f yields the energy product of
the squared instantaneous amplitude and frequency magnitude Φ[a cos(φ)] ≈ a2||ω||2
with an approximation error bounded within a negligible range for locally narrowband
signals. Applying Φ to the partial derivatives fx = ∂f/∂x, fy = ∂f/∂y yields the 2D
continuous Energy Separation Algorithm (ESA) [24]:√

Φ(fx)
Φ(f)

≈ |ω1(x, y)|

√
Φ(fy)
Φ(f)

≈ |ω2(x, y)| Φ(f)√
Φ(fx) + Φ(fy)

≈ |a(x, y)| (4)

This algorithm can estimate at each location (x, y) the amplitude and the magni-
tude of the instantaneous vertical and horizontal frequencies of the spatially-varying
2-D AM-FM signal. The signs of the frequency signals are obtained from the signs
of the carriers, approximated by the bandpass filter central frequencies. By replacing
the partial derivatives with differences a variety of discrete energy operators emerge. A
simple 2D case is:

Φd(f)(i, j) = 2f2(i, j)− f(i− 1, j)f(i + 1, j)− f(i, j − 1)f(i, j + 1) (5)

Applying Φd to a 2D discrete AM-FM signal f [i, j] = a[i, j] cos(φ[i, j]) yields [24] a
nonlinear energy product Φd[a[i, j] cos(φ[i, j])] ≈ a2[i, j](sin2(Ω1[i, j]) + sin2

(Ω2[i, j])), where Ω1, Ω2 are the discrete-space instantaneous frequencies. The discrete
ESA [24], can give estimates of instantaneous amplitude and frequencies of narrowband
image components with an excellent spatial resolution and very low complexity.

2.2 Low-Dimensional AM-FM Features via Dominant Component Analysis

The previously described demodulation scheme yields a 3K-dimensional feature vector
at each point, where K is the number of filters used in the Gabor filterbank. Even though
this descriptor offers rich information about the texture signal, it cannot be used as is
for segmentation purposes, due to its high dimensionality.



124 G. Evangelopoulos, I. Kokkinos, and P. Maragos

A more compact descriptor can be extracted using the Dominant Component Analy-
sis (DCA) [10,12] scheme: DCA picks at each image pixel the most active filterbank
channel, demodulates its output and uses the resulting AM-FM features to represent
the local texture structure. This offers at each image point a three-dimensional feature
vector that retains essential information about the texture structure, describing its most
prominent characteristics in terms of a sinusoidal signal.

At the heart of the DCA method lies the channel selection criterion used to pick the
most active channel at each point; in the original work on DCA the local estimates of
the amplitude envelopes Ak for each channel k were used, which are estimated as Ak =√
 (gk ∗ I)2 + !(gk ∗ I)2, where I is the image and gk is the impulse response of the

k-th complex 2-D Gabor filter. In [18] we presented a detection theoretic interpretation
of this ‘maximum-amplitude’ channel selection criterion, relating the Ak term with
the log-likelihood of the image observations around the neighborhood of each point.
Further, it was observed that using an energy-operator-based instead of an amplitude-
based selection criterion offers a viable alternative, characterized by better localization
accuracy and in [20] this alternative channel selection criterion was cast in a detection-
theoretic framework as well.

2.3 Unsupervised Variational Textured Image Segmentation

Region-based techniques are commonly considered as more appropriate for textured
image segmentation, since the application of boundary-based techniques and the re-
lated variational schemes of Snakes, Deformable models [15,6] and Geodesic Active
Contours [5,16] is based on the detection of strong variation in texture features [22,31],
which is a non-trivial problem.

Some of the first variational region-based textured image segmentation techniques
[21,46] have used modified versions of the Mumford-Shah functional [28] appropri-
ately modified to incorporate the multi-dimensional features used for texture descrip-
tion; building upon this work, current state-of-the-art algorithms in unsupervised vari-
ational region-based segmentation [45,33,43,38,13,4] rely on the level-set methodol-
ogy [29,23,41,34] which has been established as an elegant and efficient mathematical
tool for the solution of problems involving evolving interfaces, offering robustness and
tractability.

A significant precursor of recent work has been the Region Competition [46]
method, which has helped clarify and unify different variational criteria and has in-
troduced a probabilistic flavor in the curve evolution literature. The core idea of this
algorithm is the maximization of the probability of the image observations I , using a
set of M regions Ri, within which the observations are assumed to follow a simple
region-specific parametric distribution P (·; ai); an additional term on the length of the
region borders, Γi is used to give rise to the following functional:

J(Γ, {ai}) =
M∑
i=1

μ

2

∫
Γi

ds−
∫∫

Ri

logP (I; ai) (6)

We have omitted the penalty on the number of regions used in [46], since in our case this
remains fixed throughout the segmentation process. Calculus of variations yields the
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evolution of the region borders as the motion along the direction that assigns pixel ob-
servations to the region that models them better while maintaining the borders smooth:

∂Γi

∂t
= −μκN + log

P (I; ai)
P (I; aj)

N (7)

where κ is the curvature andN the outward normal of front Γi and j is the neighboring
region that competes with i for the observations at the interface position. Parameter
estimation for the distributions P (·; ai) is performed in alternation with curve evolution
yielding an adaptive unsupervised image segmentation scheme.

In [33] this evolution algorithm has been brought together with the level set method-
ology and combined with edge-based terms, giving rise to the Geodesic Active Regions
(GAR) algorithm

∂Γi

∂t
= λ log

P (I; ai)
P (I; aj)

− (1− λ) [g(Pc)κN + (∇g(Pc) · N )N ] (8)

where g(·) a monotonically decreasing function, Pc the probability of a pixel belonging
to a boundary and λ determines the relative weights assigned to region- and edge-based
information. The last term is inspired from the Geodesic Active Contour Model [16,5]
and forces the region borders to stay close to the locations where an edge detector
responds strongly. Other successful algorithms like [43,45] can be seen to be of the same
essence with the original Region Competition algorithm; for example the model of [43]
is based on the cartoon approximation to the Mumford-Shah functional [28], which in
turn is a special case of the Region Competition functional for Gaussian distributions
with equal variances.

2.4 Texture Features for Unsupervised Variational Segmentation

As mentioned earlier, even though the outputs of a filterbank may provide a rich de-
scription of the texture signal, their high dimensionality can lead to suboptimal seg-
mentations. In the supervised texture segmentation scenario e.g. [32] this problem is
bypassed by choosing the channels that maximally separate different textures. It is
however harder to tackle the unsupervised problem, since choosing the best channels
is equivalent to projecting the features onto a subspace where some unknown a-priori
classes become maximally separated; this is usually performed using heuristic criteria,
as e.g. in [39,40].

In a recent attempt to alleviate the problem for unsupervised segmentation, Rousson
et al. [38] have used a vector valued diffusion procedure to smooth a low-dimensional
image descriptor, derived from local image derivatives. Combined with image intensity
the resulting four-dimensional feature vector offers satisfactory results for the unsuper-
vised segmentation of textured images. In the information-theoretic approach of [17]
segmentation is accomplished without using a feature extraction stage, using as the sole
criterion the maximization of the mutual information between region label and image
intensity. In [13] distributions tuned to capture natural image statistics were shown to
result in improved results when incorporated in curve evolution schemes for texture
segmentation.
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The representation of a texture in terms of its DCA features offers a low-
dimensional feature vector, that is expressive enough for the discrimination of a wide
variety of textures, encompassing information about texture strength, scale and orien-
tation. Specifically, the feature vector we consider consists of the image intensity and
the DCA components, namely amplitude, frequency magnitude and orientation. The
distribution of the feature vector P (·; ai) within region i is modelled as a product of a
multivariate Gaussian for the first three dimensions and a von-Mises distribution for the
orientation feature θ, which is analogous to the Gaussian distribution for orientational
data:

PV M (θ; θ0, κ) ∝ exp(κ cos(θ − θ0)) (9)

The parameters θ0, κ of this distribution are estimated as in [9]. Segmentation results
using the DCA feature vector can be found in Section V as well as in [19].

3 Regularized Demodulation

Let us consider an image I of K locally narrowband components fk(x, y) modelled by
AM-FM signals and corrupted by a WSS zero-mean Gaussian noise field w(x, y):

I(x, y) =
K∑

k=1

ak(x, y) cos(ωk0 · (x, y) + φk(x, y))︸ ︷︷ ︸
≈fk(x,y)

+w(x, y)

For each component fk, assuming a negligible AM-FM modeling error, its instanta-
neous frequency is given by ωk = ωk0 + ∇φk(x, y), where the carrier ωk0 is its
mean frequency and φk(x, y) is the nonlinear phase part. The fundamental problem
of demodulating the image I aims at estimating the instantaneous amplitudes ak(x, y)
and frequencies ωk(x, y). Unavoidable modeling errors of any demodulation algorithm,
the presence of noise, interference from neighbor spectral components, and space dis-
cretization of the signal derivatives are possible sources that can cause errors in the
demodulation of each narrowband component fk(x, y). Robustness in the AM-FM de-
modulation problem can be achieved in various ways, e.g. by optimizing any one or
some of the following problems: (1) Reduction of the error in modeling each narrow-
band component fk(x, y) by a 2D AM-FM signal while maintaining some smooth-
ness in the estimated amplitude and frequency modulation signals. (2) Suppression of
noise. (3) Suppression of neighbor spectral components while estimating one compo-
nent. (4) Regularization of derivatives. Simultaneously achieving all the above goals is
a complex optimization task, which remains an unsolved problem. We present a regu-
larized 2D energy operator and a related regularized 2D ESA that address some of the
above problems in more than one combinations.

In the 1D case [30], given a narrowband signal f(x) to model by a(x) cos(ω0x +
φ(x)), problem (1) has been given an optimum solution based on the Hilbert transform
and analytic signal, which minimizes the mean-squared energy

∫
|a′(x)|2dx of the am-

plitude derivative. This yields an optimum carrier frequency ω0 as the center of gravity
of the one-sided power spectrum

∫∞
0 |F (ω)|2dω of the given signal f(x). In [36] it has

been shown that, the ESA estimates of instantaneous amplitude and frequency of f(x)
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bare a modeling error comparable to that of the Hilbert transform. However ESA has
a better space-time resolution and much lower complexity. A simultaneous solution to
problems (2) and (3) has been given in [3] by using a filterbank of bandpass filters, each
centered at the spectral mean location of each narrowband component. The bandpass
filtering increases the SNR and reduces the bias and variance of the ESA estimates of
instantaneous amplitude and frequencies.

Given discrete image data, problem (4) immediately arises since the energy oper-
ator involves two differential operators. As analyzed in [35] for the problem of edge
detection, two regularized solutions, which minimize the sum of the data approxima-
tion error and the energy of the second derivative of the approximating function, are
(i) spline interpolation and (ii) convolution of the image data by a function that can be
closely modelled by a Gaussian. In our problem which deals with narrowband but not
necessarily lowpass signal components the Gaussian filter response must be modulated
by a sine with carrier equal to the spectral mean location of the component. This yields
a Gabor filter. In [8], the spline and the Gabor regularization of the energy operator and
of the ESA were compared for 1D signals. This comparison yielded a slight superiority
of the Gabor ESA.

Motivated by all the above, we propose a 2D Gabor ESA algorithm for simultaneous
filtering and demodulation. Let I(x, y) be the continuous image, g(x, y) the impulse of
a real1 2D Gabor filter, and f(x, y) = I(x, y) ∗ g(x, y) the output of the Gabor filter.
Since, convolution commutes with differentiation, the continuous 2D energy operator
combined with Gabor bandpass filtering becomes

Φ(f) = Φ(I ∗ g) = ‖I ∗ ∇g‖2 − (I ∗ g)(I ∗ ∇2g) (10)

Thus, the differential operators have been replaced by derivatives of the Gabor filter.
The final algorithm for the Gabor energy operator (EO) becomes: (1) Find analytically
and store all required differential formulae of the Gabor function g(x, y) evaluated on
the pixel locations of a sampling grid (i, j) = (iΔx, jΔy). We need three differential
formulae: gx, gy,∇2g. (2) For estimating the instantaneous energy at the pixel locations
(i, j) use the formula (10) of the combined continuous energy operator and Gabor fil-
tering by using for each convolution the discrete convolution of the given image data
I[i, j] and the required Gabor derivative sampled at (i, j).

Similarly, for estimation of the instantaneous amplitude and frequency, the 2D Ga-
bor ESA for demodulating f = I ∗ g consists of the following two steps. (1) Use
the Gabor EO to compute the instantaneous energies of three image functions: Φ(f),
Φ(fx = I ∗ gx) = ‖I ∗ ∇gx‖2 − (I ∗ gx)(I ∗ ∇2gx) and Φ(fy = I ∗ gy). For all three
energies we need seven Gabor differential formulae: gx, gy, gxx, gyy, gxy,∇2gx,∇2gy .
(2) Use the evaluated energies in the formula of the 2D continuous ESA. The 2D Ga-
bor EO is computationally more intensive than the corresponding discrete EO, since it
needs three convolutions (compared with one for the discrete case), but adds robustness
and improved performance.

1 If we use a complex Gabor filter, then we can use a 2D energy operator for complex-valued
signals f defined in [24] by C(f) = Φ[
(f)] + Φ[�(f)], i.e. the sum of the real energy
operator applied to the real and imaginary part of the complex signal.
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One approach to reduce the total complexity of applying the Gabor EO or the ESA
to all filter outputs is to use the following modified procedure: (1) Apply Gabor band-
pass filters to obtain all narrowband components fk = I ∗ gk. (2) To each component
fk(x, y) apply the following Regularized Energy Operator (REO)

Φσ(fk) = ‖fk ∗ ∇Gσ‖2 − fk(fk ∗ ∇2Gσ)

where Gσ(x, y) = (1/2πσ2) exp[−(x2 + y2)/2σ2] is an isotropic Gaussian at reg-
ularization scale σ, and ∇Gσ and ∇2Gσ are the well-known gradient-of-Gaussian
and Laplacian-of-Gaussian operators.The REO needs only 3 convolutions of the nar-
rowband image component fk with the ∂/∂x, ∂/∂y and ∇2 of the Gaussian. For
the corresponding regularized ESA, we need the three regularized energies Φσ(fk),
Φσ(∂fk/∂x) = ‖fk ∗ ∇(∂xGσ)‖2 − fk[fk ∗ ∇2(∂xGσ)] and Φσ(∂fk/∂y). All the
Gaussian differential formulae are common for all filters and need to be computed once.

(a) (b)

Fig. 1. Regularized Features: Dominant Amplitude (a) ESA (b) Gabor ESA

4 Probabilistic Cue Integration

A problem faced by our algorithm, as well as most feature-based segmentation algo-
rithms, is that at areas where the model underlying the feature extraction process fails
to accurately capture signal behavior the features may be meaningless and can drive
the segmentation to suboptimal solutions. For example, in the presence of edges the
DCA-based amplitude is typically high, describing large oscillations while at smooth
regions the orientation of the frequency vector varies erratically. In this section we in-
troduce a method that renders the segmentation process immune to such problems by
automatically choosing which features the evolution equations should rely upon.

Our method uses a confidence measure assigned to the features used to drive the
segmentation process; this may be hard to obtain generally, but can be naturally accom-
plished in our case where a specific generative model can be devised, i.e. a model that
for a specific set of parameters offers a prediction and a related likelihood expression
for its observations. When multiple models are used for feature extraction, a posterior
distribution can be defined using these likelihood expressions based on Bayes’ rule,
thereby indicating which of these most accurately captures the observations.
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Below we briefly review our contributions [18,20] in providing such a framework
for the DCA model and subsequently provide a modification of the Region Competi-
tion/GAR algorithm that allows for the fusion of the extracted features in a simple and
efficient manner.

4.1 Generative Models for Features

The generative model we introduce for texture explains the image neighborhood around
a specific point in terms of two sub-models, namely a texture model and a generic
background model; the degree to which these two sub-models contribute to the ex-
planation of an observation depends on its distance from the point around which the
model is defined. In all of the following the treatment will consider the signals as
one-dimensional, for the sake of notational clarity. The synthesized prediction ST (x)
at point x of the texture sub-model defined around point 0 can be expressed as the
sum of a sinusoidal of fixed frequency ω and phase offset φ and a DC component B:
ST (x) = A cos(ωx + φ) + B, while the background sub-model is considered to be a
uniform distribution. The spatial variation of our confidence in these two sub-models
can be phrased as:

P (I(x)|x, 0) = G(x)P (I(x)|ST (x)) + (1−G(x))c, (11)

where P (I(x)|x, 0) is the likelihood of the observation at point x, given the model
related to the texture hypothesis that is defined around point 0; G(x) accounts for
the locality of the modeling process and is taken to be a Gaussian function normal-
ized so that G(0) = 1. The corruption of the texture synthesis ST (x) is modelled
by P (I(x)|ST (x)) which is a Gaussian distribution with mean ST (x) and unknown,
constant variance while c is the constant term contributed by the uniform background
model. Using the quadrature pair ge = cos(ωx)G(x) and go = sin(ωx)G(x) of
Gabor filters centered around frequency ω, in [18,20] it is shown that the quantity
Ak =

√
(ge ∗ I)2 + (gp ∗ I)2 is related to the likelihood of the image observations

under the probabilistic model outlined above. In this sense, picking the channel with
the largest amplitude estimate amounts to choosing the channel that explains the data
best.

To apply the same rationale to edge detection, we used the observation that edges
are phase congruent signals [27], i.e. signals of the form A

∑
k ak cos(ωk + φ); for

φ = 0 we derive line (triangular) edges and for φ = π
2 step edges. Again, using an

appropriate quadrature filter pair of odd and even filters we can derive an amplitude
estimate related to the likelihood of the observations under this model [20]. A model
that complements these two classes is the smooth signal model, for which we use the
locally DC signal, using again an expression of the form Eq. (11) to account for the
locality of the decision made.

Using these three models we are able to estimate the probability of a pixel having
been generated by one of the three hypotheses considered based on Bayes’ rule. Apply-
ing this approach on natural images gives visually appealing results as shown in Fig.
2, since textured areas are correctly discriminated from edges, matching closely what
a human would call a texture or an edge. Given that the previously described models
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do not take into account higher order structure or grouping cues, the results are quite
satisfactory. A more extensive presentation of the approach outlined above can be found
in [18,20].

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. From [20]: Textured areas can be successfully discriminated from edges, using simple
generative models. Top row: (a) Input image, (b) texture and (c) edge model amplitude estimates,
respectively and model-based probabilities of (d) smooth, (e) textured and (f) edge regions re-
spectively. Bottom row: (g)/(j) Input images and posterior probabilities of (h)/(k) texture and
(i)/(l) edge models respectively.

4.2 Cue Integration for Region Competition

In this section we present a modification of the Region Competition algorithm that can
exploit the confidence measures assigned to the feature set used to drive the segmenta-
tion process. This fits naturally with the models used for feature extraction in our work,
but its application is not constrained to these.

The rationale underlying the Region Competition evolution equations is to assign to
each region the observations that it can most accurately explain in terms of its distrib-
ution. This is implemented using a probabilistic balloon force [6], that pushes the front
of region i along its outward normal with a force proportional to:

OI = log
Pi(I; ai)
Pj(I; aj)

,

where j is the competing neighboring region. This quantity, termed log − odds quanti-
fies the degree to which the observation I is more likely under hypothesis i than under
hypothesis j. Supra - Bayesian fusion methods [14] consider this quantityOI as a ran-
dom variable, which follows a Gaussian distribution conditioned on the actual class of
the data I:

P (OI |i) ∝ N(μi, σ
2), P (OI |j) ∝ N(μj , σ

2)

This quantifies the certainty associated with any decision made based onOI : a large σ,
i.e. a low confidence in log-odd accuracy can diminish the effect of a large value ofOI .
From a good classifier we would generally expect that μi >> μj with a low σ, which
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means that if the data I are due to hypothesis i, then it is very probable that OI will
take a high value and vice versa.

Based on the above approach, the results of N classifiers using different features
or different classification methods can be easily integrated [14]: their log-odds O =
[O1, . . . ,ON ] are viewed as a multidimensional random variable that follows a
Gaussian distribution conditioned on the class of the data i.e.

P (O|i) ∝ N(μi,Σ), P (O|j) ∝ N(μj ,Σ)

The posterior log-likelihood ratio given all the expert odds is then:

log
P (i|O)
P (j|O)

= (O −
μi + μj

2
)T Σ−1(μi − μj)

We thereby build a decision using as features the outputs of classifiers, instead of the
actual features. For the special case where the classifier outputs are uncorrelated, we
have a diagonal covariance matrix; further, by appropriately scaling and shifting the
classifier outputs we can guarantee that μi = −μj and all the elements of the μi vector
equal unity, so that we have

log
P (i|O)
P (j|O)

=
∑

c

Oc

σ2
c

This formula expresses a straightforward idea: when a classifier gives noisy results, i.e.
has a large σ, a lower weight should be assigned to his decision and vice versa. The
use of log-odds is particularly convenient, in that we express this weighting operation
in terms of a summation.

In our case, we consider that the assignment of an observation to region i or region
j is a decision taken by fusing the assessments of two experts, where the decision of
the first is based on the texture features and that of the second on the intensity values.
Using the previous notation we have

OT = log
PT (FT ; aT

i )
PT (FT ; aT

j )
, OS = log

PS(FS ; aS
i )

PS(FS ; aS
j )

where by PM (FM ; aM
i ) we denote the likelihood of the feature-set FM extracted based

on hypothesisM (texture-T or smooth-S) under the hypothesis-specific distribution PM

of region i, whose parameters are aT
i . For the final decision, each expert’s opinion is

weighted by the probability of each hypothesis, estimated as described in the previous
subsection; this way for textured areas the texture features have a larger impact on the
evolution of the curve than the intensity features, and vice versa for smooth regions.
Equation 6 thus becomes:

∂Γi

∂t
=

⎡⎣ ∑
c∈T,S

wc log
P c(Ic;αi)
P c(Ic;αj)

− μκ

⎤⎦N (12)

where the index c ranges over the cues that are being fused and wc is the related cue
weight. Further, as in [33] one can introduce edge based information, but now exploiting
the model-based probability of edge in which case the evolution equation becomes:
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∂Γi

∂t
=

⎡⎣ ∑
c∈T,S

wc log
P c(Ic;αi)
P c(Ic;αj)

⎤⎦N − we [gκN + (∇g · N )N ] (13)

with we being the probability of the edge hypothesis. This does not interfere with the
edge detection procedure used to estimate∇g, since it simply provides an indication of
how important the edge information should be deemed.

We note here that the weights entering the fusion equations do not have to be esti-
mated using the specific models described previously; as an alternative that we intend
to explore in future work, the celebrated U+V decomposition [44] could be used to in-
dicate regions with a strong texture component, and subsequently provide weights for a
fusion algorithm.

5 Experimental Evaluation

As described in [19], curve evolution is implemented using level-set methods [41,42]
along the lines of [33]. As in [40,38,45] the distribution of the data inside each region is
learned in parallel with the evolution process, resulting in an adaptive scheme. For all
the results presented in this work the regions have been initialized so as to partition the
whole image in interleaved thin parallel strips, while we have observed that the results
do not depend substantially on the initialization.

In Fig. 3 (a)-(d) we present the modulation features extracted via DCA and segmen-
tation results using four alternative schemes: In Fig. 3(e) the results of curve evolution
along the lines of [19] are shown, using the 3-dimensional DCA-based texture descrip-
tor while in (f) we show results using the cue integration scheme described in this work.
In (g) the orientation channel is added to the feature vector, with no performance degra-
dation on smooth areas, contrary to (e), and improved boundary localization. In the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Top Row: Features used for Segmentation. (a) Intensity, (b) Amplitude, (c) Freq. Mag-
nitude, (d) Freq. Orientation vectors, Bottom Row: Segmentation results, using (e) the original
evolution equations [46,32] as in [19], (f) the fusion evolution equations, excluding the orienta-
tion channel and (g) including the orientation channel, (h) Diffusion-based features [38] and the
original evolution equations. Please see text for details.
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fused cases, (f) and (g), the region boundaries tend to accurately capture the object bor-
ders, while in (e) the erroneously estimated texture features prevent them from doing
so. Further results are provided in Fig. 4, where we generally observe that the fused fea-
tures give better segmentations results, with the region borders accurately locating the
object borders. The effect of the orientation features which behave erratically at smooth
areas is diminished, due to the smaller weight assigned to the texture hypothesis at these
regions.

(a) (b) (c) (d)

Fig. 4. Segmentation Comparisons: (a) original evolution equations, (b) the fusion evolu-
tion equations, excluding the orientation channel and (c) including the orientation channel,
(d) Diffusion-based features [38]

In order to obtain quantitative results, segmentation results for an increasing num-
bers of fronts were derived for the whole Berkeley test set and compared to human
segmentations based on the Bidirectional Consistency Error (BCE) measure introduced
in [25]. This measure quantifies in a smooth manner the overlap between a machine
generated segmentation and a set of manual segmentations, and is minimized when for
every machine-generated segment there is at least one human-generated segmentation
wherein the segment is contained as a whole and vice versa.

Initially we compared the performance of the raw AM-FM features used in [19] to
that of the nonlinear diffusion-based feature set [38]; in all the related results presented
herein some uncertainty is retained due to potential inaccuracies in the implementation
of the algorithms in [38]. For this comparison, the orientation features were omitted, in
order to avoid spoiling the feature vector at smooth regions. Comparing the histograms
in Fig.s. 5(a)(b) the BCE can be seen to be lower for the AM-FM features, indicating
their potential to accurately describe a textured region in terms of a low-dimensional
feature vector. As already mentioned, the introduction of the orientation channel in
the feature vector typically results in segmentation performance degradation in the cases
of smoothly varying areas and edges; a point that we make in this paper is that using
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Fig. 5. Berkeley Benchmark evaluation: Histogram of Bidirectional Consistency Error [25] over
100 test images for varying number of fronts (2-5) for: (a) Diffusion-based features (b) Unfused
data, without orientation (c) Fused data with orientation. Please see text for details.

a fusion algorithm counteracts these defects and allows the orientation channel to be
incorporated in a manner that is immune to its behavior on smooth regions. This can
be seen by a comparison between Figs. 5(b)(c), where the BCE is seen to have almost
the same distribution; that the introduction of the orientation vector does not lead to a
systematic improvement in the results can be due the fact that the data set provided in
[26] does not contain many heavily textured images, where the information carried by
the orientation channel is most valuable.

6 Conclusions

Multicomponent AM-FM models propose a powerful approach to the representation,
analysis and segmentation of textured images. Our contributions presented herein lie
in (1) the introduction of a regularized demodulation algorithm that can alleviate dis-
cretization problems and introduce increased noise robustness and (2) the probabilistic
integration of features related to different image models, based on a modification of
the region competition evolution equations. Systematic comparisons have demonstrated
that the derived features compare favorably to those used by the current state-of-the-art
methods, indicating the appropriateness of modulation features for unsupervised tex-
tured image segmentation.
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Abstract. We present a computationally efficient segmentation–restoration
method, based on a probabilistic formulation, for the joint estimation of the label
map (segmentation) and the parameters of the feature generator models (restora-
tion). Our algorithm computes an estimation of the posterior marginal probabil-
ity distributions of the label field based on a Gauss Markov Random Measure
Field model. Our proposal introduces an explicit entropy control for the esti-
mated posterior marginals, therefore it improves the parameter estimation step.
If the model parameters are given, our algorithm computes the posterior mar-
ginals as the global minimizers of a quadratic, linearly constrained energy func-
tion; therefore, one can compute very efficiently the optimal (Maximizer of the
Posterior Marginals or MPM) estimator for multi–class segmentation problems.
Moreover, a good estimation of the posterior marginals allows one to compute es-
timators different from the MPM for restoration problems, denoising and optical
flow computation. Experiments demonstrate better performance over other state
of the art segmentation approaches.

1 Introduction

Image segmentation from different attributes (such as gray level, local orientation or
frequency, texture, motion, color, etc.) is typically formulated as a clustering problem.
Although generic clustering algorithms as K-Means or ISODATA have been used with
relative success [8], the consideration of spatial interactions among pixel labels provides
additional, useful constraints on the problem [2][3] [6][7] [9][10] [11][12] [13][14]
[17][18] [19][20] [21][22] [23][24].

Therefore, most successful algorithms for image segmentation taked into account
both the observed pixel values (which are generally noisy) and pixel context information.

We assume that an image of features, g, in the regular lattice L, is an assembly of K
disjoint regions, R = {R1, R2, ..., RK}. Moreover, such features are generated with a
generic parametric model φ, with θ = {θ1, θ2, ..., θK} as the corresponding parameters
for each region, i.e.:

gr =
K∑

k=1

φkrbkr + ηr (1)
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where r = [x, y]T is the position of a pixel in the regular lattice L; φkr
def
= φ(θk, r) is

the parametric model of the actual value of the feature at pixel r; θk is the parameter set
corresponding to the kth region; bkr is an indicator variable equal to one if the pixel r
was generated with the model k and equal to zero otherwise and η is an additive, inde-
pendent, identically distributed noise process. In the general case, the one we consider
here, the parameter set is unknown and needs to be estimated.

Bayesian regularization framework has been successfully used for finding the solu-
tion to these problems [6][10] [11][12] [13][14] [18] [19][20] [21][22] [24][25]. In this
framework, the solution is computed as a statistical estimator from a posterior proba-
bility distribution. In particular, one needs to estimate the label map, b, and the model
parameters, θ, from the posterior distribution Pb,θ|g. If it is assumed independence be-
tween b and θ and a uniform prior distribution for θ, then this posterior distribution is
given by:

Pb,θ|g = Pg|b,θPb/Pg (2)

where the likelihood of the whole label field is obtained from a mixture model :

Pg|b,θ =
∏
k

∏
r

(vkr)bkr ;

with vkr as the probability (individual likelihood) that the observed value at pixel r
was generated with model k (that uses the set of parameters θk). For instance, if η is
Gaussian with zero mean and variance σ2:

vkr =
1√
2πσ

exp

[
− (gr − φkr)

2

2σ2

]
, (3)

for a real valued feature image g. In the framework of Bayesian Estimation Theory, b is
modelled as a Markov Random Field (MRF) with prior distribution, Pb, in the form of
a Gibbs distribution:

Pb =
1
z

exp
[
−β

∑
C

VC(b)
]
; (4)

where z is a normalization constant and VC is a potential such that it assigns larger
probabilities to smooth label fields than to granular ones and β is a positive parameter.
The most popular potential is the Ising model:

Vkrs(b) =
{
−1 if bkr = bkr ∀k

1 if bkr �= bks.
(5)

Finally, Pg is a normalization constant independent of the unknowns b and θ.
In most cases, approximate solutions for this complex estimation problem are found

by 2-step procedures,[2][4][12][14][20] in which the best segmentation, given the pa-
rameters is found in the first step, and the optimal estimator for the parameters, given
the segmentation is found in the second step, iterating these 2 steps until convergence.
Usually, one chooses the models, φ in such a way that the maximum a posteriori (MAP)
estimator for the parameters θ given b is relatively easy to compute. For instance, flat,
planar or spline models have successfully been used [12][14][18]. However, the MAP
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estimator for the label field requires the solution of a combinatorial optimization prob-
lem. Graph–Cuts based algorithms[2][3] [7][19][23] can be used to compute the exact
MAP estimator in the case of binary segmentation or an approximation for problems
with more than two classes. The problem here is that using a “hard” segmentation in the
first step of the procedure, makes the 2-step algorithm prone to get trapped in local min-
ima, producing suboptimal results. A better strategy is to compute, instead of a set of bi-
nary indicator variables, their expected value (i.e., the posterior marginal distributions),
in which case the 2-step procedure is equivalent to the Expectation-Maximization (EM)
algorithm [4][15][20]. Upon convergence, a hard segmentation may be computed, if
desired, using, for instance, the MPM estimator [11]:

Definition 1 (MPM Estimator). The MPM estimator of the label field is given by:

bMPM
kr =

{
1 if πkr ≥ πlr , for k �= l
0 otherwise,

(6)

where πr is the marginal probability distribution of the pixel r.

An estimation, p, of the true marginals, π, can be computed with Markov Chain
Monte Carlo (MCMC) based methods [6][10]. In such a case, samples {b(1), b(2), . . . ,
b(N)}, of the posterior distribution, Pb,θ|g, are used to compute the empirical marginals:

pkr = 1
N

∑N
j=1 b

(j)
kr , that satisfy

E[pkr ] = πkr (7)

where E[·] denotes the expectation operator. The problem with these methods lies in
their high computational cost.

A more efficient approach considers the empirical marginals as a vector-valued ran-
dom field (i.e., a random measure field) that needs to be modeled. There are 2 main mod-
els that have been proposed: one based in a Mean Field (MF) approximation [20][24],
and the other in a Gauss-Markov Measure Field (GMMF) model [13]. Both of them,
however, have certain drawbacks: the MF approach leads to algorithms that are rela-
tively slow and sensitive to noise, while the GMMF approach presented in [13] pro-
duces estimators for the marginal distributions that differ significantly from the true
ones, in the sense that these distributions (one for each pixel) have significantly higher
entropy than the ones found asymptotically by MCMC approaches. If the model para-
meters are known, this difference is not too important, since usually the modes of these
distributions (and hence, the MPM estimator) are correct; if the model parameters are
unknown, however, this high entropy produces an unstable behavior of the EM algo-
rithm, producing bad results. The goal of this paper is to present a better GMMF model
for the empirical marginals that produces estimates that are in agreement with the true
ones, and that can be efficiently computed.

2 Entropy Controlled GMMF (EC-GMMF) Models

The use of GMMF models for estimating the posterior marginal distributions is based
in the following:
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Theorem 1 (Gauss-Markov Measure Fields (GMMF)). Let the binary label field b
be a Markov random field (MRF) with posterior distribution (2) and v the likelihood
field, then the empirical marginal field, p, is itself a MRF with posterior distribution:

Pp|v = Pv|pPp/Pv (8)

with the following properties:

1. It is Markovian with the same neighborhood system as b.
2. It is Gaussian, i.e. Pp|v ∝ exp [−U(p; v)], where the energy U(p; v) is a Quadratic,

Positive Definite (QPD) function of p.

The proof is presented in [13]. This theorem establishes important properties of the
marginal probabilities, π, of the label field, b, with posterior distribution (2), but it does
not determine the exact form of the QPD energy U . Given (7), and Theorem 1, π can
be estimated as the MAP estimator of (8). In order to find a particular form for U , an
additional consistency constraint is imposed in [13]:

Consistency Constraint 1 (GMMF). If no prior information is provided [i.e. Pπ is the
uniform distribution] then the maximizer of (8) is π∗ = v̄, where v̄kr = vkr/

∑
j vjr .

Based on these properties, the function U that is proposed in [13] is:

U(p; v) =
K∑

k=1

∑
r∈L

[
(pkr − v̄kr)2 +

λ

2

∑
s∈Nr

‖pkr − pks‖22

]
, (9)

where Nr = {s ∈ L : |r − s| = 1} is the set of nearest neighbor pixels to r. In
spite of the fact that the minimization of (9) can be done with computationally efficient
algorithms, the use of this equation has two disadvantages: first, it depends on the model
parameters (via the likelihoods v) in a highly non-linear way (3), which makes difficult
its incorporation in EM procedures, and second, the set of distributions ({pr} field)
that minimizes (9) are relatively flat (i.e., they have high entropy), which makes them
unsuitable for EM procedures.

In order to propose a new QPD function U that overcomes these difficulties, we
need to relax the consistency constraint 1; the new constraint is:

Consistency Constraint 2 (EC-GMMF). If no prior information is provided, the
mode of the optimal estimators for the posterior marginal distributions π∗ coincides
with the maxima of the corresponding likelihoods v, i.e., the MPM estimator for the
label field, computed using π∗ coincides with the maximum likelihood estimator.

With this relaxed constraint, we may introduce log v instead of v in the data term,
to get a quadratic dependence on the model parameters θ (assuming a Gaussian noise
model). Entropy control is introduced by adding a penalization term of high entropy
distributions; to keep quadratic the energy function, we use the Gini coefficient [5]
(instead of the Shannon’s entropy [22]): −

∑
k

∑
r p2

kr; so that we finally get:

UEC(p, θ) =
∑

k

∑
r

[
p2

kr (− log vkr − μ)+
λ

2

∑
s∈Nr

(pkr − pks)
2] (10)
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subject to ∑
k
pkr = 1, ∀r and pkr ≥ 0, ∀k, r; (11)

where the parameter μ controls the entropy of the marginals. Note that for μ < 2λ, we
can assure that (10) is QPD. It is found that the performance of the estimation algorithms
does not depend critically on the precise value for μ; we have used μ = 0.1λ in all the
experiments reported here.

2.1 Computation of the Optimal Estimators

The minimization of (10) may be carried out by a 2-step (EM) procedure. The MAP
estimators for the marginals, pMAP , and the models, θMAP , are computed by iterating
alternated minimizations of (10) w.r.t. p and θ, respectively. These minimizations have
the following interesting properties:

Theorem 2 (EC-GMMF Convergence). Assuming that UEC is QPD with respect to
p and Vkr is a uni-modal distribution, we have:

(i) If θ is given, the problem of minimizing UEC w.r.t. p, subject to the constraints
(11) has a unique local minimum, which coincides with the constrained global
minimum.

(ii) If p is given, the problem of minimizing UEC w.r.t. θ has a unique local minimum,
which coincides with the global minimum.

(iii) The iterated alternate minimizations of UEC w.r.t. p and θ converges, at least, to
a local minimum.

The proof of (i) and (ii) follows from the facts that UEC is a QPD function of p for fixed
θ, and of θ for fixed p, and the constraints (11) are linear (see [16]). (iii) Follows from
(i) and (ii) and from the fact that UEC ≥ 0.

Last theorem establishes that any descent algorithm will converge to the global min-
imum in the E and M steps of the EM procedure. In particular, if the model parame-
ters are given, one may find very efficiently the optimal (MPM) segmentation even for
multi-class segmentation problems, which represents a significant advantage over al-
gorithms like those based on graph cuts, which guarantee global optimality only for
2-class problems.

In the algorithm we propose here, the equality constraint in (11) may be incor-
porated using the Lagrangian method: the Lagrangian, that incorporates the equality
constraints, is given by:

L(p, θ) = UEC(p, θ)−
∑

r

γr

(
1−

∑
k
pkr

)
(12)

where γ are the Lagrange multipliers of the equality constraints. Now, we define nkr
def
=

λ
∑

s∈Nr
pks and

mkr
def
= (− log vkr − μ) + λ Nr. (13)
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Algorithm 1. Gauss-Seidel Implementation of Parametric Segmentation
1: Set the initial model parameters θ0 and initially set p0 = v;
2: Given the tolerance ε > 0;
3: for i = 1, 2, . . . do
4: for all the pixels r do
5: for all the models k do
6: Compute pikr with (14);
7: Project pikr = max{0, pikr};
8: end for all the models

{The renormalization of the pir can be performed here}
9: end for all the pixels

10: Update the models θi with (15);
11: if ‖pi − pi−1‖ < ε then
12: STOP with solution p∗

kr = pikr and θ∗ = θi;
13: end if
14: end for

where  S is the cardinality of the set S. Equating to zero the gradient of (12) w.r.t. p,
solving for pkr and substituting in the equality constraint (11), one finally obtains the
Gauss-Seidel update equation:

pkr =
nkr

mkr
+

1−
∑N

l=1
nlr

mlr∑N
l=1

mkr

mlr

. (14)

Note, however, that pkr computed with (14) does not necessarily satisfy the non-
negativity constraint in (11). If such a constraint is violated, one makes the negative
pkr equal to zero, and renormalizes the vector pr. In our experiments we found that this
simple method works properly and is faster than more sophisticated methods(such as
gradient projection).

In practice, one gets better performance, in terms of computational efficiency, if the
θ variables are updated after every Gauss-Seidel iteration, instead of waiting until con-
vergence of the E step, i.e. by using a Generalized EM algorithm (GEM) [15]. One gets
then a direct procedure, in which the p and θ variables are simultaneously optimized.

Given that θ is not constrained, it may be computed, after every update of the p
field, by

θMAP = argmin
θ

∑
k

∑
r

[
−p2

kr log vkr(θ)
]
. (15)

The complete procedure is summarized in algorithm 1. Line 10 in such an algorithm
is generic and depends on the specific feature model; in the next section we present a
particular case.

3 Experiments

The purpose of the experiments in subsection 3.1 is to evaluate the relative performance
of the EC-GMMF model with respect to other state of the art segmentation methods.
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Three aspects are evaluated: Noise robustness, computational efficiency and entropy
control. In subsection 3.2 we show an application of our method to other Computer
Vision problems: Image Denoising and Optical Flow estimation. We also show that
using the same p∗ obtained, we can directly compute different estimators that serve as
solutions to Piecewise Constant and Piecewise Smooth regularization.

3.1 Numerical Experiments

The normalized test images (two models synthetic image and Lenna’s portrait) were
corrupted with additive Gaussian noise with mean zero and variance 0.30 and 0.05 re-
spectively. The first experiment, illustrated by Fig. 1, demonstrates the robustness of

Data Graph Cut HMMF EC-GMMF

Fig. 1. Segmentation method performance for different level noise, see text for details

the EC-GMMF method to noise. The task is to segment and estimate the models’ pa-
rameters for a five models synthetic image with levels 1,2,3,4 and 5. First column in
Fig. 1 shows the data corrupted with Gaussian noise with: σ = 0.7, 1.0, 1.2, 2.0, re-
spectively. The second column shows the segmentations computed with a multi–way
graph cut based algorithm. This algorithm has the drawback of being based on a MAP
criterion, and it is known that for low SNR data the MPM estimator exhibits better
performance. The third column shows the results computed with other state of the art
parametric segmentation method, namely HMMF, which in [14] is shown to have better
performance than the Mean Field and MCMC-based EM procedures. Our results are
consistent with the ones reported by the authors [14]: HMMF models are more robust
to noise than graph-cuts based algorithms; however, we found that HMMF algorithm
is very sensitive to the precise selection of the parameters’ values: the noise variance,
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the regularization parameter, the initial p–field values and the minimization algorithm
parameters (i.e. the friction coefficient and the step size for the gradient projection New-
tonian descent algorithm [14]). In part, such a difficulty lies in the fact that the energy
function, in the HMMF model, is not convex, which makes the descent algorithm prone
to be trapped by local minima. Last column shows segmentations computed with the
proposed EC-GMMF method. The experiment shows the superior performance of the
proposed method: EC-GMMF produces acceptable segmentations even for low SNR
data and in a fraction of the computational time of the compared methods. The number
of iterations for all the algorithms were 500 in all cases. The initial estimates for the
models (φrk = θk, with θk ∈ !) where uniformly distributed in the dynamic range of
the noisy data; we initialize p0kr = vkr and p0kr = 1/5 for the EC-GMMF and the
HMMF algorithms, respectively. In this case −logvkr = (gr − θk)2. So that step 10 in

algorithm 1 is computed, for each θ model at the ith iteration, with: θik = r grp2
ikr

r p2
ikr

.

Fig. 2. Comparison of the robustness to noise of different methods. (a) Test image. (b) Computed
marginals corresponding to the central row (see text).

Figure 2-(b) shows a comparison of the computed marginals for the central row
in figure 2-(a). The model parameters are in this case assumed known, i.e. φ1r = 0
and φ2r = 1, for all the pixels r. The thin solid line corresponds to the p2 marginals
computed with the Gibbs Sampler algorithm (a MCMC method) after 2,000 iterations,
with a computational time of 15.92 sec. The heavy line shows the marginals computed
with the original GMMF formulation (with λ = 10 in 0.18secs.) and the dotted line,
the marginals computed with the EC-GMMF method in 1 second (with λ = 10 and
μ = 3 in 0.33secs.). The proposed EC-GMMF approximates very closely the marginals
computed with the MCMC method but at a fraction of the computational time. If no
entropy control is applied in the EC-GMMF formulation (i.e., for μ = 0), then the
computed marginals are similar to the ones computed with the original GMMF method.

For the multi–class problem such entropy reduction can be observed in the maxi-
mum p-value maps (i.e maxk pkr). Figure 3 shows the max p–values for the case of
10 models computed with: (a) Gibbs Sampler (comp. time, 318.12 secs.), b) original
GMMF (comp. time 0.75 secs.) and (c) EC-GMMF (comp. time, 2.03 secs.), respec-
tively. The apparently low entropy of the Gibbs sampler results may be explained by an
incomplete convergence, even after about 5 min.

Next experiment compares the computational efficiency of the EC-GMMF as the
number of models is incremented. Parametric segmentations of the Lena’s portrait were
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Gibbs Sampler GMMF EC-GMMF

Fig. 3. Maximum value of the marginals: Dark pixels denotes low (high entropy) values

Fig. 4. Comparison of the computational times for the EC-GMMF and HMMF algorithms for
different number of models

performed with the HMMF and the EC-GMMF algorithms. Figure 4 shows the cor-
responding computational times; the Gibbs sampler method (not shown in the plot)
required 5 min for 10 models.

3.2 Optimal Estimators for Piecewise Smooth Reconstruction

The fact that one can obtain very precise approximations for the marginals, allows one
to compute estimators other than the MPM, which give very good results for piecewise
smooth restoration problems. These estimators may be obtained even with fixed models
that sample uniformly the search space, producing highly efficient methods. The idea
is to compute, instead of the posterior mode (MPM estimator), the mean or median of
the estimated posterior marginal distribution at each pixel. The resulting estimators will
have sharp discontinuities when these are present in the image, and produce smooth
transitions between adjacent models in other places. The posterior mean is computed
using:f̄r =

∑
k θkpkr .

This is illustrated in Fig. 5, where the first row shows the results for the piecewise
smooth restoration of a noise-corrupted Lena image. Second row in Fig. 5 shows details
of the corresponding images in first row. A similar procedure may be used for the
computation of piecewise smooth optical flow from a pair of images [1][12][14][22].
In this case, the models are 2-vectors that correspond to discrete velocities that sample
the space of allowed displacements: φij = θij = [ui, vj ]T where we make a slight
notation change by substituting the index model k by the more intuitive pair ij. For
the example of Fig. 6 we use ui = vi = dm(2i/Δ − 1) for i = 0, 1, . . . , Δ), where
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Fig. 5. First row: Explicit entropy control allows us restore images by using estimators other than
the MPM see text). Second row: Details.

Fig. 6. Optical flow computation (a) Frame 8 of the Hamburg taxi and optical flow magnitude
estimator with (b) n = 1, (c) n = 2 and (d) n = ∞ (mode)

dm is the largest expected displacement and Δ is number of models in [−dm, dm]; we
use dm = 2.5 and Δ = 6 with bi–cubic interpolation for the fractional displacement
that corresponds to consider displacements of {±2.50,±1.66,±0.83, 0} in the x and
y directions. Now, let f1 and f2 be two consecutive frames from a sequence. Then,
assuming Gaussian noise, we have:− log vijr = [f1(r)− fr(r − θij)]2. One may now
compute an optimal estimator that interpolates smooth velocities between neighboring
models, while preserving the motion discontinuities. Note that since in this case the
models are only partially ordered, one cannot compute the median. Instead, one may
compute a family of estimators that include the mode and the mean as special cases:

f̄r =
∑
ij

θijwijr (16)

with wijr = pn
ijr/

∑
ij pn

ijr The parameter n controls the sharpness of the transitions
between models: for large n the estimator corresponds to the mode, while for n = 1
one gets the mean.

Since the θ parameters are fixed, one finds the optimal p as the unique minimizer of
UEC using the Gauss-Seidel algorithm with projection that was described above. The
only change that is necessary is in the definition of mkr in (13), which changes to:
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mijr
def
= [f1(r) − fr(r − θij)]2 − μ + λcard(Nr). (17)

Note that since (17) does not depends on p, mijk can be precomputed, and the com-
putational cost is the same as that for the case of image restoration with fixed constant
models.

Figure 6 shows the computed optical flow with the EC-GMMF method for different
estimators. Panel (a) shows the frame 8 of the Hamburg taxi sequence (image f1) the
other image corresponds to the frame 9 (no shown). Panel (b) shows the mode optical
flow, i.e. the vector field θij corresponding to the largest marginal at each pixel. Panel
(c) show the mean flow and panel(d) shows a robust mean computed with (16) and
n = 2. The mean optical flow is obtained with a sub-pixel resolution and the edges are
better preserved by the robust mean.

4 Summary and Conclusions

We have proposed an efficient parametric segmentation method based on Bayesian
estimation with prior MRF models and the Expectation-Maximization (EM) procedure.
This method estimates the model parameters and the posterior marginals in successive
steps as minimizers of QPD energy functions subject to linear constraints, so that each
step in the EM procedure has a unique minimum. We also showed that it is possible to
implement the estimation process as a Generalized EM algorithm, in which one performs
the minimization of the posterior energy with respect to the model parameters and the
posteriormarginalssimultaneously,whichdecreasessignificantly thecomputationalcost.

The key point for the superior performance of our method is the introduction of
a quadratic term (derived from the Gini coefficient) that controls the entropy of the
posterior marginals. This performance is demonstrated by numerical experiments that
compare our approach with other state-of-the-art algorithms, such as minimum graph-
cut and HMMF methods. The numerical experiments performed demonstrate that the
proposed algorithm is more robust to noise and to the initial values for the parameters
and significantly more efficient from a computational viewpoint.

It is important to remark that for the case of fixed models, the algorithm reduces to a
single E step, and the posterior marginals computed with a simple and efficient Gauss-
Seidel procedure correspond to the global optimum. Since these marginals are entropy-
controlled, they approximate very well the true ones, and may be used to compute
estimators different from the posterior mode (MPM), such as the posterior mean or
median. These estimators have the property of interpolating smoothly the estimated
feature between neighboring constant models, while preserving the discontinuities in
the solution. Two early vision applications that take advantage of this fact are presented:
piecewise smooth image reconstruction and optical flow computation.
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Abstract. The active contour model [8,9,2] is one of the most well-known varia-
tional methods in image segmentation. In a recent paper by Bresson et al. [1],
a link between the active contour model and the variational denoising model
of Rudin-Osher-Fatemi (ROF) [10] was demonstrated. This relation provides a
method to determine the global minimizer of the active contour model. In this
paper, we propose a variation of this method to determine the global minimizer
of the active contour model in the case when there are missing regions in the ob-
served image. The idea is to turn off the L1-fidelity term in some subdomains,
in particular the regions for image inpainting. Minimizing this energy provides a
unified way to perform image denoising, segmentation and inpainting.

1 Introduction

Image segmentation, image restoration and image inpainting are a few basic yet impor-
tant areas in image processing and computer vision. Traditionally, these closely related
fields were developed independently. However, the use of the level set method and vari-
ational methods in recent years started to bring all these fields together. One example
is the TV-inpainting model [7]. We can perform inpainting in a desired domain while
applying the ROF model [10] to remove noise from the rest of the domain using only
one energy functional.

There are two interesting recent developments about the connection between differ-
ent fields in image processing. We will discuss later in this paper how they link different
fields in an interesting way. The first development concerns the impulse-noise removal
method and the variational method for image regularization. In two recent papers by
Chan, Nikolova et al. [3,4], a two-phase method was proposed to remove impulse-type
noise. For a true image u∗(x) and an observed image f(x) defined in a domain Ω,
impulse-type noise is defined by

f(x) =
{

r(x) with probability r0
u∗(x) with probability (1 − r0).

(1)

As an example, for the so-called salt-and-pepper noise, r(x) is simply the maximum or
the minimum of the image intensity. The main idea in those papers is to separate the de-
noising process into a noise detection phase and a noise removal phase. In the first stage,

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 149–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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a median-type filter is applied to the observed image to detect the possible locations of
the impulse noise. Then in the second phase, instead of replacing the intensity at all
locations by the median intensity around a certain neighborhood, an L1-regularization
method is applied only to those locations reported in the first phase while keeping the
other pixels unchanged. The resulting method was shown to be able to remove salt-and-
pepper noise efficiently even at a very high noise level (for example r0 = 0.75). The
main reason for its success is that this method both retains those pixels that are unlikely
to be polluted and maintains sharp edges in the whole image.

Another interesting development is a new model that uses a variational method for
image segmentation [5,1]. The idea of the model is to minimize an energy functional
consisting of a weighted TV-norm with an L1-fidelity term. For segmentation of a bi-
nary image, the papers showed an equivalence between the new energy functional and
that of the active contour model. This relation can be used to overcome the problem
of the active contour model in which the energy function is not convex. Very often the
snake will be trapped into a local minimum thus giving unsatisfactory segmentation
results. The link between these two energies, as demonstrated in the above papers, pro-
vides a convenient way to determine the global minimizer of the active contour energy.

In this paper, we will combine these two recent advances in image processing.
This provides an efficient way to bring image denoising (for both impulse-type and
Gaussian-type noise), image segmentation, and image inpainting together. For low di-
mensional images, one could of course solve each of these tasks individually. It is com-
putationally inexpensive to do so. As a result, it might not be obvious to see any advan-
tage of having such a combined strategy for one or two dimensional images. However,
for higher dimensional images, dealing with these problems separately might not be
practical. The main difficulty concerns the computational time. With over 106 voxels, it
could take days to analysis only one 3D scan. Therefore, by solving only one variational
problem which performs all these tasks simultaneously, we could significantly speed up
the computational time.

The rest of the paper is organized as follows. In Section 2, we will briefly review
the denoising model by Chan, Nikolova et al. [3,4] and also restate the link between
the active contour model and the ROF model as in [1]. A new model will be given in
Section 3. Section 4 contains some details about the numerical implementation. Some
numerical results are given in Section 5.

2 Two Recent Developments

2.1 A Two-Phase Method to Remove Impulse-Type Noise

Unlike the usual way to denoise impulse noise by applying the median-type filter to
the image and replacing the image intensity everywhere, the idea in [3,4] is to sepa-
rate the denoising processing into a noise-detection phase and a noise-removal phase.
Mathematically, the first phase can be formulated as determining a noise candidate set
N = {x ∈ Ω : f(x) �= fMF(x)} in which Ω is the image domain, f(x) is the observed
image intensity at the pixel x, and fMF(x) is the intensity at x after applying a median-
type filter, such as the classical median filter or the adaptive median filter. In the second
phase, the following functional is minimized
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F |N (u) =
∫
N

{
|u(x)− f(x)|+ β

2
[S1(u) + S2(u)]

}
(2)

where

S1 =
∫
V(x)∩(Ω\N )

2φ[u(x)− f(y)]dy and S2 =
∫
V(x)∩N

φ[u(x) − u(y)]dy , (3)

V(x) is the neighborhood centered at x and φ is an edge-preserving potential function.
As seen in [3,4], one possible choice for φ is φ(t) =

√
t2 + ε2 with a small constant

ε. The first term in the curve-bracket is an L1-fidelity term. The terms in the square-
bracket can be interpreted as an approximation of the total variation of u.

In the simple case when the noise can be separated accurately in the first step, the
fidelity term is not important. This whole algorithm can then be simplified and the
resulting variational method is the same as an image inpainting algorithm. For example,
if ROF [10] or L2 squared fidelity is used instead, we arrive at the TV-inpainting of [7].
That is, given an observed image f , one minimizes the following energy

E1(u) =
∫

Ω

|∇u|+ 1
2

∫
Ω

λ(x)|u − f |2 (4)

where λ(x) = 0 if f(x) = fMF(x) and λ(x) = λ∞ # ∞ otherwise.
The idea of using a piecewise constant λ(x) in TV-inpainting is not new [7]. How-

ever, it is interesting to see here the relationship between impulse-type noise removal
and image inpainting by using a λ(x) determined by a median-type filter.

2.2 Global Minimizer of the Active Contour Model

In the classical active contour model, the initial guess of the segmented image plays a
very important role. We show in Figure 1 some minimizers of the active contour model.
As we can see, different initial conditions in the evolution will give different segmented
region. More importantly, none of these results corresponds to the true segmented re-
sults, i.e. curves which separate all regions with different intensities in the whole image.
One reason for these unsatisfactory results is that the minimization problem of the ac-
tive contour is not convex, and therefore it is very likely that the energy minimization
could be trapped into a local minimium.

Recently, a few algorithms were proposed [5,1] to determine the global minimizers
of some image segmentation models. In particular, an algorithm to determine the global
minimizer of the active contour model based on the ROF model was given in [1]. The
idea is to modify the ROF energy

EROF(u, λ) =
∫

Ω

|∇u|+ λ

2

∫
Ω

|u − f |2 (5)

by first replacing the TV-norm by a weighted TV-norm and then, more importantly,
changing the measure in the fidelity term from the square of the L2-norm to the L1-
norm. This gives

E2(u, λ) =
∫

Ω

g̃(f)|∇u|+ λ

∫
Ω

|u− f | (6)

in which g̃(f) = 1/(1 + β|∇f |2).
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Fig. 1. Segmentation results using the active contour model. We show different initial config-
urations of the snake on the first row. The corresponding segmented results using these initial
conditions are shown on the second row.

As pointed out in [1], if u is the characteristic function of a set ΩC with boundary
given by the curve C (i.e. u = 1ΩC ), the minimizer of the above energy E2 is the same
as the minimizer of the active contour energy

EAC(C) =
∫

C

g̃(f)ds (7)

with f approximated (in the sense of L1) by a binary function of a region ΩC .
Numerically, the minimization problem (6) is convex. This means that the method

of gradient descent will converge to a unique minimizer, i.e. the global minimum of the
energy function, independent of the initial condition. This equivalence is significant be-
cause by minimizing (6), one can determine the global minimium of the active contour
model (7) avoiding both the danger of being trapped into any local minimum and the
uncertainty in picking an initial configuration of the snake.

3 The New Energy

3.1 The Energy

Here, we propose a new model to combine those developments mentioned above. Given
an observed image f , we minimize the energy

E(u) =
∫

Ω

g(f)|∇u|+
∫

Ω

λ(x)|u − f | . (8)

This energy is similar to (6), except that λ(x) is now changed into a function of the
space variable and the weight in the weighted TV-norm is also modified. The function
λ(x) has the following properties.

λ(x) =

⎧⎨⎩
0 TV-inpainting
λ0 Denoising

λ∞ # ∞ u remains unchanged.
(9)
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Fig. 2. Problem setting. Definition of the set Ω′ (domain for inpainting), Ω̃′ (compliment of Ω′)
and ΩC (domain bounded by the curve C).

In the subdomain for image inpainting, f(x) (and also g̃(f)) might not be known. We
therefore simply set g(f) = 1, or β = 0. For the rest of the domain, we keep g(f) =
g̃(f).

Here we give some suggestions in picking such a function λ(x) and also provide
a variation in using the above minimization algorithm. For salt-and-pepper noise, the
following λ(x) works efficiently. We define d(x) to be the difference in the intensities
between the original image f(x) and the modified image after applying the median-type
filter fMF(x), i.e. d(x) = |f(x)− fMF(x)| . Then one can set

λ1(x) =
{

λ∞ if d(x) = 0 and x �∈ Ω′

0 otherwise
(10)

where Ω′ ⊂ Ω is a given subdomain for doing image inpainting and this subdomain
can also be characterized by an user predefined mask function. This means that if x is in
the inpainting domain Ω′ or if the noise-detector detects that the image at x is polluted
(therefore f(x) will be different from the intensity after applying the median-type filter
fMF(x)), then the intensity at x will be modified by a TV-type regularization. Otherwise,
the intensity at that location will remain unchanged.

If the impulse noise is random-valued instead, one can use a similar λ(x)

λ2(x) =
{

λ0 if d(x) = 0 and x �∈ Ω′

0 otherwise
(11)

with λ0 << λ∞.
For Gaussian-type noise, one can simply use

λ3(x) =
{

λ0 if x �∈ Ω′

0 otherwise.
(12)

In the case when the type of noise is not known a priori, one can try to minimize (8)
iteratively. More specifically, given the observed image u0 = f , for m = 1, · · · ,mmax,
one iteratively minimizes
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E(um) =
∫

Ω

g(um−1)|∇um|+
∫

Ω

λ4(x)|um − um−1| (13)

with

λ4(x) =
{

λ0 if d(x) ≤ d∗ and x �∈ Ω′

0 otherwise
(14)

where d∗ is a threshold in the intensity difference function d(x) ≡ |um−1− (um−1)MF|.

3.2 The Link Between Active Contour for Segmentation, Denoising and
TV-Inpainting

We explain here the relations between the minimization of the energy functional (8), the
active contour model and the TV-inpainting model. Assuming Ω′ = {x ∈ Ω : λ(x) =
0} is the subdomain for inpainting (note thatN ⊂ Ω′) and Ω̃′ = Ω \Ω′, we have

E(u) =
∫

Ω̃′
g(f)|∇u|+

∫
Ω̃′

λ0|u− f |+
∫

Ω′
|∇u| = E1(u) + E2(u) (15)

where

E1(v) =
∫

Ω̃′
g(f)|∇v|+

∫
Ω̃′

λ0|v − f | and E2(w) =
∫

Ω′
|∇w| (16)

with v : Ω̃′ → [umin, umax] and w : Ω′ → [umin, umax]. So minimizing E(u) is
the same as minv E1(v) + minw E2(w) , and the minimizer of E(u) is given by u =
1Ω̃′(x) · v + 1Ω′(x) · w in which 1Ω̃′ is the characteristic function of the set Ω̃′.

First we consider the energy E1(v). If ΩC is a set in Ω̃′ whose boundary is denoted
by C and if the minimizer of E1(v) is given by v = 1ΩC , then we have

E1(v) =
∫

Ω̃′
g(f)|∇1ΩC |+

∫
Ω̃′

λ0|1ΩC −f | =
∫

C

g(f)ds+
∫

Ω̃′
λ0|1ΩC −f | . (17)

Therefore, minimizing E1(v) in the subdomain Ω̃′ in the case of a binary observed
image is equivalent to minimizing the active contour energy in Ω̃′ while approximating
f (in the L1 sense) in Ω̃′ by a binary function of ΩC .

For the energy E2(w) defined in the complement, Ω′, we have E2(w) =
∫

Ω′ |∇w|
and the boundary condition w|∂Ω′ = v|∂Ω′ where v is the minimizer of E1(v). In the
case when v is binary on ∂Ω′, we have w = 1ΩC′ again. This gives

E2(w) =
∫

Ω′
|∇1ΩC′ | =

∫
C′

ds . (18)

This implies that when the value of v on the boundary ∂Ω′ is binary, minimizing E2(w)
in Ω′ is equivalent to minC′

∫
C′ ds while the end points of C′ are fixed on ∂Ω′. Further

analysis on the behavior of TV-inpainting can be found in [6].
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Fig. 3. (Example 1) (First row) The original true image and the corresponding image with an user
defined mask (in black). (Second row) The original image with 75% salt-and-pepper noise, 50%
random-valued impulse noise and additive Gaussian noise (σ = 20) respectively.

Fig. 4. (Example 1) The minimizer for the energy (8) without (first row) and with (second row) an
extra mask. The left, middle and right columns show the denoising results with salt-and-pepper,
random-valued impulse and addition Gaussian noise.
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Fig. 5. (Example 2) The true image and the corresponding image with an user defined mask (in
black)

Fig. 6. (Example 2) The true image with 75% salt-and-pepper noise, 50% random-valued impulse
noise and additive Gaussian noise (σ = 20) respectively

4 Numerical Method

To minimize the above energy, we use the method of gradient descent. The Euler-
Lagrange equation of the energy functional (8) is given by

∂u

∂t
= ∇ ·

(
g(x)
|∇u|∇u

)
− λ(x)

u− f

|u − f | . (19)

This equation can be solved numerically using the standard fully explicit scheme. In the
current paper, however, we solve (19) using the Alternative Direction Explicit (ADE)
technique.

5 Examples

In the following examples, we use u0(x, y) = 0 as the initial condition for the Euler-
Lagrange equation. Unlike the classical active contour/snake model, different initial
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guesses used will give the same global minimizer of the segmentation model in the
case of binary images.

5.1 Example 1

The true image used in this example has 256× 256 pixels and is shown on the top left
in Figure 3. The corresponding image with an user predefined mask is shown on the
right on the same row. The black region is the domain Ω′ where we want to perform
TV-inpainting. The second row of Figure 3 shows the noisy versions of the true image.

The first row of Figure 4 shows the denoised image together with its segmentation
with 75% salt-and-pepper noise, random-valued impulse noise and additive Gaussian
noise. As we see from the figures, all noise is completely removed from the image.
The red curves on the graphs are the boundaries of the segmented regions. Unlike the
minimization of the active contour model, we can now easily reach the global mini-
mum of the energy for these binary images regardless of the initial condition of the
Euler-Lagrange equation. In the case of denoising together with image inpainting, the
segmented results are shown on the second row of Figure 4. Again, all noise is com-
pletely removed from the image and we are able to fill in the missing part of the image
using only one energy function.

5.2 Example 2

The true image of Elaine used in this example has 512×512 pixels and is shown on the
left of Figure 5. On the right, we give the corresponding image with a predefined mask.
75% salt-and-pepper noise, 50% random-valued impulse noise and additive Gaussian
noise with standard deviation σ = 20 are added to the original image and these observed
images are shown in Figure 6. The minimizers of the energy functional (8) for these
noisy images are shown in Figure 7. Since the original image is not binary, different
level contours of the final figure will give different minimizers [1]. Using the case where
salt-and-pepper noise and an external mask are added, we plot in Figure 8 the segmented
results using the levels u = 128 and u = 170.

5.3 Example 3

Figures 9 shows the denoising results of a 3D brain MRI image. The number of voxels
is 128× 256× 256. The computational time is approximately 354 mins.

6 Conclusion

In this paper, we proposed combining the three most fundamental tasks in image
processing - denoising, inpainting and segmentation. The idea is based on [5,1] but with
the Lagrange multiplier, λ(x), carefully chosen. At those locations where inpainting is
required, we can set λ(x) to be zero, which gives TV-inpainting. Indeed, TV-inpainting
may not be the perfect model. For example, as mentioned in [7], TV-inpainting may
not satisfy the so-called Connectivity Principle and may give unpleasant results to hu-
man vision. To improve this, one could modify the TV-regularization in the current
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Fig. 7. (Example 2) The minimizer for the energy (8) without (first column) and with (second
column) an extra mask. The top, middle and bottom rows show the denoising results with salt-
and-pepper, random-valued impulse and addition Gaussian noise.
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Fig. 8. (Example 2) Different segmented results with level (left) u = 128 and (right) u = 170 for
the case with salt-and-pepper noise and an extra mask, i.e. from the top right picture in Figure 7

Fig. 9. (Example 3) (Left) A few slices of a noisy brain MRI image and (right) their corresponding
denoised version

framework by a higher order interpolation model, for example, based on the Euler’s
Elastica [7]. As another drawback of the model, we indeed obtain multiple minimizers
of the active contour model for non-binary images, as seen in Figure 8. This limitation
is inherited from the original theory as described in [1].
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Abstract. In this paper, we propose a framework to carry out super-
vised classification of images containing both textured and non textured
areas. Our approach is based on active contours. Using a decomposition
algorithm inspired by the recent work of Y. Meyer, we can get two chan-
nels from the original image to classify: one containing the geometrical
information, and the other the texture. Using the logic framework by
Chan and Sandberg, we can then combine the information from both
channels in a user definable way. Thus, we design a classification algo-
rithm in which the different classes are characterized both from geomet-
rical and textured features. Moreover, the user can choose different ways
to combine information.

Keywords: Classification, texture, geometrical image, decomposition,
logic model, level-set, active contour, PDE, wavelets.

1 Introduction

The problem of image classification consists in assigning a label to each pixel of
an image. This label indicates to which class belongs a pixel. The classification
problem is closely related to the segmentation one, in the sense that the aim is
to get a homogeneous partition of the image. In the classification problem, each
region represents a class. Many classification models have been developed: region
growing algorithms [30], stochastic algorithms [9,18,29], and most recently active
contours [2,23,20,4,26], including statistical ones [16,14].

The approach which we use here is inspired from [23,34,4,24], and is based
on active contours [2,11,28,35,13,31]. The partition we seek is a minimizer of
a functional. We compute this minimizer by solving the associated PDE’s sys-
tem. These PDEs guide the interfaces (zero level sets) towards the boundary
of the optimal partition thanks to internal (regularity of the interface) and ex-
ternal (data term and partition) forces. But, as far as we know, none of the
existing classification models using a variational approach can deal with images
containing both textured and non-textured areas (except for the work of [29]).

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 161–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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For instance, [23,34,13] are designed to work with non-textures images whereas
[20,25,4,17,21,10] are specifically devoted to textured images classification.

The idea of our method is as followed. Given an original image, we first split it
into a geometrical component and a textured component thanks to the algorithm
of [3]. We thus get two channels from our original image: a geometrical one, and
a textured one. We construct a data term associated to the geometrical (resp.
textured) component by using the method of [23] (resp. [4]). We combine them in
a user definable way thanks to the logical framework introduced in [24], and we
are then in position to carry out the classification of our original image containing
both textured and non-textured areas. Since we use the logical framework of [24],
a class can be characterized both by textured and non-textured features.

The novelty of the paper lies in the combined use of all these recent methods.
The fact that a class can be characterized simultaneously by geometric and
textured features has already been proposed in [29]. The specificity of our work
is that thanks to the logical framework, we can combine these two information
in a user definable way. Indeed, depending on the application, there can be
many meaningful classifications for the same image. One of the main advantage
of our framework is that the user can specify which classification result he is
interested in. The use of a decomposition algorithm to split an image into a
geometrical component and a textured component, in order to apply adapted
algorithms to each part of the image, has already been introduced successfully
in image inpainting [8] and in image nonlinear interpolation [7]. Notice that the
classification part of our algorithm does not care how we compute the image
decomposition, and therefore other methods could be used as well to get the two
channels.

The plan of the paper is as followed. In Section 2, we first introduce the
decomposition models of [3,5]. In Section 3, we present a general classification
framework as used in [23,4]. We emphasize on the choice of the data term in
Section 4. In Section 5, we recall the logic model of [24] and show how we
can use it in our classification algorithm. We illustrate our approach with some
numerical examples.

2 Decomposition Model

In [19], Meyer discussed the classical Rudin-Osher-Fatemi model [22]. He intro-
duced a new model to split a given image f into a sum u + v of a bounded
variation component and a component containing the oscillating part of the im-
age. The u component can be viewed as a sketch of the original image f . This
model has first been successfully implemented by Vese and Osher [32]. In this
paper, we will use the algorithm of [3]. See also [5,27] and references herein for
other interesting approaches.

Let Ω be a bounded open set of R2 with Lipschitz boundary. The space used
to model the geometrical component u of an image f is the space BV of functions
with bounded variation. A function f belongs to BV (Ω) if it is in L1(Ω), and
if its total variation is finite. We will denote by J(f) the total variation of f .
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Formally, we have: J(u) =
∫

Ω
|∇u| We refer to [12,19,2] for a deeper insight

in BV .
In [19], Meyer has proposed a new decomposition model:

inf
(u,v)∈BV ×G|f=u+v

(J(u) + α‖v‖G) (1)

The Banach space G contains signals with large oscillations, and thus in par-
ticular textures and noise. A function belonging to G may have large oscillations
and nevertheless have a small norm. We refer the reader to [19,3,5] for the def-
inition as well as the properties of G. In [3], the authors have introduced the
following functional:

inf
(u,v)∈BV ×μBG

(
J(u) +

1
2λ
‖f − u− v‖2L2

)
(2)

where μBG = {v ∈ G(Ω)/‖v‖G ≤ μ}. The parameter λ controls the L2-norm of
the residual f − u− v. The smaller it is, the smaller the L2-norm of the residual
gets. And μ controls the G-norm of the oscillating part v. It is shown in [3] that
solving (2) is a way to solve (1). The minimum of (2) is computed by minimizing
alternatively in each variable u and v. We denote by PK the orthogonal projec-
tion on a set K. When K = μBG for some μ > 0, this projection is computed
thanks to Chambolle’s algorithm [12]. The algorithm of [12] is based on a fixed
point method.

Algorithm:
1) Initialization: u0 = v0 = 0.
2) Iterations: vn+1 = PμBG(f − un) (this amounts to minimizing (2) with

respect to v when u is fixed), and un+1 = f − vn+1 − PλBG(f − vn+1) (this
amounts to minimizing (2) with respect to u when v is fixed).

With the decomposition algorithms of [3], we are thus able to isolate the
geometrical component of an image, as well as its textured one. In the next
section, we present a general classification framework which can be used on
these two components [23,4].

3 Classification Framework

Our approach here is inspired from [23,4]. We will use the same classification
framework.

Partition, Level Set Approach: The image is considered as a function u0 :
Ω �→ R (where Ω is an open subset of R2).

We denote by Clk = {x ∈ Ω / x belongs to the class k}. In order to get a
functional formulation rather than a set formulation, we assume that for all
k = 1 . . .K, Clk is an open set Ωk given by a Lipschitz function Φk : Ω → R

such that:
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Φk(x) > 0 if x ∈ Ωk

Φk(x) = 0 if x ∈ ∂Ωk

Φk(x) < 0 otherwise

(typically, Φk is the signed distance function to ∂Ωk). Ωk is thus completely
determined by Φk (i.e. x ∈ Ωk ⇔ H(Φk(x)) = 1, where H is the Heaviside
function ). The collection of open sets {Ωk} forms a partition of Ω if and only if
Ω =

⋃
k Ωk

⋃
k ∂Ωk , and if k �= l Ωk

⋂
Ωl = Ø. We also use the Dirac distribu-

tion δ. In order that all the expressions we write have a mathematical meaning,
we use classical regular approximations δα and Hα of these distributions (see
[23,4]). When α → 0, we have δα → δ and Hα → H .

Functional: Our functional has three terms:
1)

FA (Φ1, . . . , ΦK) = λ

∫
Ω

(
K∑

k=1

Hα (Φi)− 1

)2

Minimizing this energy term ensures that the result is indeed a partition of the
image. It penalizes the pixels which are unclassified, as well as the ones classified
in at least two regions simultaneously. This type of energy term has first been
introduced in [34]. Another way to impose the partition constraint has been
recently proposed in [31].

2)

FB (Φ1, . . . , ΦK) =
K∑

k=1

γk |∂Ωk| (3)

This term penalizes the contours length, which prevents from having too irregular
contours and a lot of small regions. It is possible to show that (the proof is
given in [23]): limα→0

∫
Ω

δα(Φk)|∇Φk|dx = |∂Ωk|. Then, in practice, we seek to
minimize:

FB (Φ1, . . . , ΦK) =
K∑

k=1

γk

∫
Ω

δα (Φk) |∇Φk| (4)

3)

FC (Φ1, . . . , ΦK) =
K∑

k=1

ek

∫
Ω

Hα(Φk)Bk dx (5)

This last term stands for the data term, and we will explain how to construct it
in the following sections.

Complete Functional: The functional we want to minimize is the sum of the
three previous terms:

F (Φ1, . . . , ΦK) = FA(Φ1, . . . , ΦK) + FB(Φ1, . . . , ΦK) + FC(Φ1, . . . , ΦK) (6)

See [1] for a theoretical study of this functional in the two phases case.
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Dynamical Scheme: To minimize (6), we compute the associate Euler-
Lagrange equations, and we embed them in the following dynamical scheme
(k = 1 . . .K):

∂Φk

∂t
= −δα(Φk)

[
λ

(
K∑

q=1

Hα(Φq)− 1

)
− γkdiv

(
∇Φk

|∇Φk|

)
+ ek

(
I∑

i=1

Bi
k(x)

)]
(7)

where the initial condition Φk(0, x) is the Euclidean signed distance function to
the zero level set Φk.

4 Specific Data Terms

In this section, we first present a data term adapted for the classification of non
textured images [23], and we then introduce another one devoted to textured
image classification [4].

Classification of non Textured Images: In [23], FC is designed to carry out
the classification of non textured images. In that case, the gray level value of each
class k is assumed to follow a Gaussian distribution of mean μk and standard
deviation σk. One can then derive the data term FC by using the maximum
likelihood method. We have Bk(x) = (u0(x)−μk)2

σ2
k

, and

FC(Φ1, . . . , ΦK) =
K∑

k=1

ek

∫
Ω

Hα(Φk)
(u0 − μk)2

σ2
k

dx (8)

Classification of Textured Images: Before presenting the model of [4], we
first emphasize that other data terms for texture classification could be used. A
very popular choice is to use Gabor filters as in [20,25]. Another interesting choice
is to use a structure tensor as in [21,17,10]. The advantage of this last approach is
that it needs much fewer parameters than Gabor filters or wavelets approach. We
have decided to use the model introduced in [4] which was specifically designed to
be used with the classification framework that we have introduced in Section 3.
In this work, FC is designed to carry out the classification of textured images.
In that case, a class k is a texture and is characterized through an undecimated
wavelet packet transform. To each pixel s, one can associate a vector U(s) =
(U1(s), . . . , UI(s)), where Ui(s) is the square of the wavelet coefficient in the
sub-band i at pixel s. Assuming that Ui has a density probability of the kind
(this fact has been checked empirically in [4])

pUi(y) =
Ai

2
√

y
exp

(
−

(√
y

αi

)βi
)

1y≥0 (9)

one can derive the data term thanks to the maximum likelihood method:

Bk(x) =
I∑

i=1

⎛⎝− log Ak
i +

1
2

log ui(x) +

(√
ui(x)
αk

i

)βk
i

⎞⎠ (10)
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5 Combining Textured and non Textured Features for
Classification

In the preceding section, we have presented two different data terms. We now
aim at combining them to carry out image classification out of both textured
and non textured features. A natural way to achieve this goal is to use the logic
framework introduced in [24].

5.1 Logical Model

In [24], the authors propose a framework for object detection using logic opera-
tions as a structure for defining multi-channel segmentation. The model combines
object information from the different channels into any logic combination. In this
paper, we consider the logical OR and the logical AND models, although this
method extend to the other logic models as well. A comprehensive description
of various logic models can be found in [24]. The basic idea is that when we
have available several channels corresponding to the same original image, each
one contain some interesting information. The difficulty is then to know how to
combine all the information coming from the different channels. The simplest
idea might be to form an energy by adding the different pieces of information
coming from each channels: this is the underlying idea in [24,4,20,29,15,33] for
instance. But restricting the way to combine the information to this single pos-
sibility is obviously too limited. That is why the authors of [24] have developed
a logic framework in which any logical operation between the different channels
can be performed. This new way of considering multi-channels data has consid-
erably increased the possible applications of active contours methods in image
segmentation and classification. An application of the logical framework to the
“active contours without edges” model [13] has been developed in [24]. One of the
main advantage of this approach is its flexibility (as illustrated on Figures 3, 4,
and 5). For the same image, there can be different meaningful classifications. We
can adapt the logical framework to get any of these meaningful classifications.

We propose here a way to adapt it to our classification framework. Assume
that B̃1 and B̃2 are logical variables (whose values are in [0, 1]). The logical OR
and logical AND models are built from the two logical elements:

OR element
√

B̃1(x)B̃2(x) (11)

AND element 1−
√

(1 − B̃1(x))(1 − B̃2(x))

These logical elements are continuous analogues of the OR and AND operations
of binary logic. The arguments B̃1 and B̃2 take on any real value between 0 and
1, where a value of 0 corresponds to no error and a value of 1 corresponds to
the maximum error. By construction, the logical elements also take on values
between 0 and 1. To apply this logical model to our classification framework, we
need to calibrate the different data terms. Indeed, the functions Bk which we use
for non textured images is positive, but it can be larger than 1; and there is no
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reason why the Bk we use for textured images should range in [0, 1]. We know
that the larger Bk(x) is, the less likely x belongs to the class k. Therefore, we
just need to linearly modify Bk so that it ranges in [0, 1] (and so that Bk(x) = 0
means that x is very likely to belong to the class k, whereas Bk(x) = 1 means
that x is very unlikely to belong to the class k). To linearly modify the functions
Bk, we compute maxk = supx∈Ω Bk(x), as well as mink = infx∈Ω Bk(x). We set
B̃k = Bk−mink

maxk −mink
. We then use these new functions B̃k in the logical framework

(11).
At this point of the paper, we have introduced all the tools we need in our

classification algorithm. We can now present some numerical results to illustrate
our approach in the following section.

5.2 Numerical Results

Initialization: To get an automatic initialization, and to make it independent
from the user, we have used “seeds” (as in [35,23,4]): we split the initial image
into small sub-images (in practice 5*5 images). In each sub-image, for each class
k, we compute the data term by assuming that all the pixels of the sub-image
belong to the same class k. We set all the pixels in the sub-image to the class k
for which the data term of the whole sub-image is the smallest.

Parameters: To use our model, we need to tune many parameters. But this
task is not as complicated as it might first appear:

1) The users give the number of classes, the texture and non texture features,
and the logical expression. Instead of giving the texture and non texture
parameters, the user can give a patch of each class (this is what we have done
here in practice). The texture and non texture parameters are then estimated
from each patch (see Section 4 for more details). In the case of real images,
the patch is a part of the original image. In the case of synthetic images, the
patch is the texture or non texture image used to create the original image.
In [4], the authors had noticed that the results of the classification of the
algoritm are not very sensitive to the choice of the patch from which the
texture parameters are estimated.

2) We first set e1 = · · · = eK = 1. If we have some additional information about
the fact that a class is very likely or not, we can then modify these values
(decreasing ek favors the class k). But in all the examples presented in this
paper, we have simply used e1 = · · · = eK = 1.

3) In our experiments, we always choose a common value for the regularization
term: γ1 = · · · = γK = γ (γ ∈ R+), which is related to the scale of the
detected objects. There remain only two parameters to tune: the partition
term coefficient λ, and the common value of the contour regularization terms
γ. The parameter λ is first determined with a value large enough in order to
ensure at the end of the algorithm that the partition constrainst is satisfied.
The results are not sensitive to variations of λ, provided it is large enough.
Second, the regularization parameter γ. Variations of γ give more or less
regular solutions. This parameter is tuned by trial and error.
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Finding a Cheetah: In this example, we aim at segmenting the cheetah in
Figure 1. we therefore have two classes. The first one corresponds to the chee-
tah. It is characterized by the intersection of the textured pattern (the dots)
of the cheetah with the average gray level value of its skin. The second class
corresponds to the background of the image. It is characterized by the intersec-
tion of the textured pattern (the vegetation) of the landscape with the average
gray level value of the background (which is darker than the cheetah). We show
the decomposition obtained with the u + v algorithm on Figure 1, and the ob-
tained classification result on Figure 2. Thanks to the combination of both tex-
tured and non textured patterns, we get an almost perfect segmentation of the
cheetah.

Original image Geometrical component Textured component

Fig. 1. Original image and u + v decomposition

Our classification Algorithm of [23] Algorithm of [4]

Fig. 2. Final classification of Figure 1 (For our model: λ = 250, γ1 = γ2 = 110,
e1 = e2 = 1, for the algorithm of [23]: λ = 20, γ1 = γ2 = 15, e1 = e2 = 1, and for the
algorithm of [4]: λ = 250, γ1 = γ2 = 130, e1 = e2 = 1))

For comparisons, we have also used the classification algorithms of [23,4] on
the cheetah image of Figure 1. We display the result with the algorithms of [23]
and [4]) on Figure 1. The algorithm of [23] is designed for non textured images. It
therefore perfoms well on the structures of the image, but fails with the textures:
it can not get the legs of the cheetah for instance. The algorithm of [4] is suited
for texured images. But it fails at recovering the head of the cheetah wich is a
non textured part of the image. This example clearly illustrates the advantage of
our approach. By using both textured and non texured features, our algorithm
gives a very good result, whereas the two previous ones fail. Notice that, in the
case when we aim at finding a given object in the image, we could improve the
quality of our segmentation result by using shape priors, as introduced in [15].
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Multiple Questions: In this last example, we illustrate the flexibility of our
approach. As we have explained in the introduction, depending on the appli-
cation, there can be many meaningful classification results for the same image.
One of the main advantage of our framework is that the user can specify which
classification result he is interested in, as we illustrate on Figures 4 and 5. We
consider the image of Figure 3. In this case, there are three classes: the one of
the zebra, the one of the gnus, and the one of the grass. We characterize each of
the three classes by its average gray level intensity and its texture pattern (the
texture parameters are computed from patches of the original image as explained
in Section 4). We display the classification result on Figure 4. For comparison,
we also show the result we get with the algorithm of [23] (for non textured im-
ages) and the one of [4] (designed for textured images). Both algorithms fail at
recovering the three classes, contrary to our new approach. In both case, the
output contains only two classes. With the algorithm of [23], the zebra and the
gnus are finally put in the same class: this is due to the fact that the average
gray level value cannot discriminate between the zebra and the gnus. With the
algorithm of [4], the grass and the gnus are finally put in the same class: this is
due to the fact that neither the grass nor the gnus have strong texture patterns,
and therefore we cannot discriminate them just from the texture information.
In this last case, the problem may also come from the fact that the texture pa-
rameters of the gnus class are estimated on a very small patch. In fact, the three
classification results of Figure 4 are the answers to three different questions.

1) The classification result of our algorithm answer to the question: Where is
the zebra, where are the gnus, and where is the grass?

2) The classification result of the algorithm of [23] answers the question: Where
are the animals?

3) The classification result of the algorithm of [4] answers the question: Where
is the zebra?

But thanks to our using the logical framework of [24], we can also get the re-
sults of the algorithms of [23] and [4] with our approach. We just need to change
the logical expressions. Let us denote by Gzebra (resp Tzebra) the geometrical
(resp texture) feature of the zebra class, Ggnus (resp Tgnus) the geometrical
(resp texture) feature of the gnus class, and Ggrass (resp Tgrass) the geomet-

Original image Geometrical component Textured component

Fig. 3. Original image and u + v decomposition
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Our classification Algorithm of [23] Algorithm of [4]

Fig. 4. Final classification of Figure 3 (for our model: λ = 250, γ1 = γ2 = γ3 = 200,
e1 = e2 = e3 = 1, for the algorithm of [23]: λ = 15, γ1 = γ2 = γ3 = 30, e1 = e2 = e3 =
1, and for the algorithm of [4]: λ = 300, γ1 = γ2 = γ3 = 150, e1 = e2 = e3 = 1)

rical (resp texture) feature of the grass class. To get the classification result
of Figure 4, we have used the following three classes: Cl1 = Gzebra

⋂
Tzebra,

Cl2 = Ggnus

⋂
Tgnus, and Cl3 = Ggrass

⋂
Tgrass. If we are interested in the

question Where is the zebra?, then we can use: Cl1 = Gzebra

⋂
Tzebra, and Cl2 =

(Ggnus

⋃
Ggrass)

⋂
(Tgnus

⋃
Tgrass). If we are interested in the question Where

are the animals?, then we can use: Cl1 = (Ggnus

⋃
Gzebra)

⋂
(Tgnus

⋃
Tzebra),

and Cl2 = Ggrass

⋂
Tgrass. We show the classification results for these two ques-

tions on Figure 5. This clearly illustrates the flexibility of the logical framework
approach [24].

Where are the animals? Where is the zebra?

Fig. 5. Classification of Figure 3 with different questions (on the left: λ = 250, γ1 =
γ2 = 150, e1 = e2 = 1, on the right: λ = 350, γ1 = γ2 = 250, e1 = e2 = 1)

6 Conclusion

In this paper, we have presented a new supervised classification algorithm for
images with both textured and non textured areas. This algorithm is based
on a variational approach. Thanks to a decomposition algorithm, we split the
image into a geometrical part and a textured part [3]. And then, thanks to the
logic framework introduced in [24], we can combine the information from both
channels to get the classification. In our framework, a class can be characterized
both by textured and non-textured features. This generalizes the approaches of
[23,34,13] which are designed to work with non-textures images, as well as the
approaches of [20,25,4] which are designed to work with textures images. Since
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natural images are combinations of both textured and non textured patterns,
our new algorithm enlarges the scope of possible applications for active contours-
based classification algorithms. We refer the interested reader to [6] for more
numerical results.
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Abstract. In this paper we present a simple modification of the Fast
Marching algorithm to speed up the computation using a heuristic. This
modification leads to an algorithm that is similar in spirit to the A∗ al-
gorithm used in artificial intelligence. Using a heuristic allows to extract
geodesics from a single source to a single goal very quickly and with a
low memory requirement. Any application that needs to compute a lot
of geodesic paths can gain benefits from our algorithm. The computa-
tional saving is even more important for 3D medical images with tubular
structures and for higher dimensional data.

1 Shortest Path: Continuous and Discrete Algorithms

A large class of problems can be formulated as the extraction of a shortest path
for a given discrete or continuous metric. The applications of shortest paths
thus range from tubular structures extraction in 3D medical images [1] to path
finding in video games [2]. The ability to quickly extract a geodesic path is highly
desirable. In this paper we propose a modification of front propagation methods.
We introduce a heuristic that drives the computations, and greatly reduces the
computation time the Fast Marching algorithm.

80%60%40%Heuristic=0% 90% 100%Coarse mesh

Fig. 1. Heuristically-driven front propagation on a 3D mesh shown with increasing
values of heuristic proportion. The various colors indicate the level sets of the geo-
desic distance function. Only the colored region is explored by our front propagation
algorithm.
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174 G. Peyré and L. Cohen

Heuristic = 50%No heuristic Heuristic = 80% Heuristic = 100%3D view of the map

0x
1x

Fig. 2. An example of 2D path planning. The set of alive points according to increasing
heuristic is shown in gray.

In this section we briefly review some basic facts about the Fast Marching
algorithm and geodesics extraction and we also present a common framework
that will allow to introduce our new approach.

1.1 Fast Marching Algorithm

The classical Fast Marching algorithm is presented in [3], and a similar algorithm
was also proposed in [4]. This algorithm performs a front propagation that can
be used to extract geodesic paths. The minimal length properties of geodesic
has been applied in computer vision, for example to solve global minimization
problems for deformable models [5]. We will illustrate various applications of
geodesic paths in section 3.

In the continuous setting, a geodesic curve minimizes the weighted length of
the curve for a given metric. In R

d, we are given a potential function g(x) > 0,
and the weighted geodesic distance between two points x0, x1 ∈ R

d, is defined as

d(x0, x1)
def.= min

γ

(∫ 1

0
||γ′(t)|| g(γ(t))dt

)
, (1)

where γ is a piecewise regular curve with γ(0) = x0 and γ(1) = x1. When g = 1,
the integral in (1) corresponds to the length of the curve γ and d is the classical
Euclidean distance.

To compute the distance function U(x) def.= d(x0, x) with an accurate and
fast algorithm, this minimization can be reformulated as follows. The level set
curve Ct

def.= {x \ U(x) = t} propagates following the evolution equation ∂Ct

∂t (x) =
1

g(x)
−→nx and the function U satisfies the nonlinear Eikonal equation:

||∇U(x)|| = g(x). (2)

The function F = 1/g > 0 can be interpreted as the propagation speed of the
front Ct.

The Fast Marching algorithm on an orthogonal grid makes use of an upwind
finite difference scheme to compute the value u of U at a given point xi,j of a
grid (the equation is written in R2 for simplicity), solving:

max(u− U(xi−1,j), u− U(xi+1,j), 0)2 +
max(u− U(xi,j−1), u− U(xi,j+1), 0)2 = h2g(xi,j)2.

(3)
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This is a second order equation that is solved as detailed for example in [6]. An
optimal ordering of the grid points is chosen so that the whole computation only
takes O(N log(N)), where N is the number of points.

1.2 Front Propagation Methods for Shortest Path

We now give a common framework for front propagation algorithms, which in-
cludes the Fast Marching procedure [3], the Dijkstra algorithm [7] to compute
shortest paths on graphs, as well as our heuristical front propagation procedure.
These methods can be described using the following formalism:

• Alive is the set of grid points at which the distance value U has been computed
and will not change;

• Trial is the set of next grid points to be examined and for which an estimate
of U has been computed;

• Far is the set of all other grid points, for which there is not yet an estimate
for U .

Table 1 shows the main steps of the algorithms. Each algorithm must implement
the following implementation-dependant sub-functions

• A way to update the value U(y) at a given Trial point y. In the Fast March-
ing and our Heuristical front propagation, U(y) is computed by solving equa-
tion 3.

• A priority map P orders the set of Alive points according to some computa-
tional criterion. In the Fast Marching and Dijkstra algorithm, P(x) = U(x)
is the current distance to the starting point. In our heuristical front propa-
gation, P(x) is chosen to minimize the number of visited points.

We will explain in section 2 how to actually construct a priority function P that
makes use of a heuristic.

Table 1. Pseudo-code for the common framework for front propagation

Initialization:

• Alive set: the starting point x0;
• Trial set: the neighbors of x0;
• Far: the set of all other grid points.

Loop:

• Let x be the Trial point with the smallest priority P(x);
• Move it from the Trial to the Alive set;
• For each neighbor y of the current point x:

– if y is Far, then add it to Alive and compute a new value for U(y),
– if y is Alive, recompute the value U(y), and update it if the new value is smaller,
– recompute the priority P(y).

• If the end point x = x1 is reached, stop the algorithm.
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1.3 Geodesic Extraction

For the applications we have in mind, the computation of the geodesic distance
U to a point x0 is only a tool needed before the extraction of a geodesic that
links this point to another point x1. This curve can be computed by extracting
the parametric curve C(t) that solves the back propagation equation:

dC

dt
= −−−→∇U with C(0) = x1.

This gradient descent is a very local computation, and it only uses the value of
U for a small fraction of the visited grid points. Note that these grid points are
those located in the Alive set at the end of the front propagation procedure.

Heuristic 0% 40% 100%60% 80%

1x

0x

Fig. 3. Path planning using a multiresolution heuristic for various heuristic strength λ

2 Heuristically Driven Front Propagation

In this section we explain our algorithm in the 2D setting, and show some nu-
merical results that illustrate the main features of this method. We also give
some insights about how to choose the parameters of our method.

2.1 Fast Marching with a Heuristic

In order to minimize the number of Alive points at the end of the front propa-
gation procedure, one should use a priority function P that will try to advance
the front toward the goal point x1, and not isotropically. In order to do so, as-
sume that together with the the current weighted distance to the start point
U(x) = d(x0, x), we are able to have an estimate of the weighted distance that
remains to be marched V (x) ≈ d(x1, x). Then our heuristical front propagation
algorithm follows the implementation of the table 1 with a priority map

P(x) = U(x) + λV (x). (4)

This introduces the first parameter of our algorithm: the weight λ we use for the
heuristic, which typically range from 0% to 100%.
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The rational behind the definition of P is that d(x0, x) + d(x1, x) is minimal
and constant along the geodesic path joining x0 and x1, see [8]. On figure 2,
one can see the effect of various choices for the parameter λ. The value λ = 0
corresponds to the classical Fast Marching propagation, which result in a very
large region of Alive points (colored in red). However, as we increase the value
of λ toward 100%, the explored region shrinks around the geodesic path that
links x0 to x1. There are however two important issues with this ordering of the
Trial set:

• This ordering can break the monotone condition that is required by the Fast
Marching algorithm to produce a valid approximation of the continuous un-
derlying distance function. We show in the numerical results presented in
section 2.4 that although these numerical errors can accumulate during the
propagation, the Hausdorff error on the extracted geodesic remains low both
in synthetic case studies and in real applications.

• We do not have an immediate access to the remaining distance d(x, x1), since
it would involve performing another front propagation from x1. We explain
in the next section how to overcome this problem.

Our heuristic ordering strategy is a reminiscence of the A∗ algorithm [9], which
was first introduced to solve problems in artificial intelligence. The use of heuris-
tics and fast exploration strategies (such as IDA∗ [10]) is crucial in the artificial
intelligence field to avoid the complexity of exploring the whole configuration
space. These techniques are also heavily used for path finding, for example in
video games [2]. We show in section 3 that a large class of applications in com-
puter vision can also gain benefit from this paradigm.

2.2 Multiresolution Heuristic

In order to compute the remaining distance V (x) ≈ d(x, x1) with a fast algo-
rithm, we perform a Fast Marching front propagation starting from the point
x1, but on a coarser grid. We thus have introduced a second parameter for our
heuristical front propagation: the resolution R ∈]0, 1[ we use for the coarse grid.
If the original potential map g is of size n× n, the query of P(y) thus requires:

• The pre-computation of a coarse potential map gR of size (Rn)× (Rn). This
is done by first a pre-filtering of g (to avoid aliasing of high frequencies) and
then a cubic spline re-interpolation on a coarser grid.

• The pre-computation of the approximate distance map V of size (Rn)×(Rn).
This is done by performing a full Fast Marching on a coarse grid, using
potential gR, and starting from point x1.

• During the heuristical front propagation starting from point x0, when P(y)
is queried, we interpolate with cubic splines the value of V on the coarse grid
to retrieve a value on the original grid.

There is clearly a tradeoff between choosing a low R to reduce the computation
time, and a high R so that V (x) approximates well d(x, x1). We show in section
2.4 some insight about the correct value for this parameter R.
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The new algorithm we propose allows to use multiresolution computation for
the extraction of geodesic curve. Using a multiresolution framework for solving
the point-to-point geodesic problem is not so easy because it is a boundary prob-
lem, and for instance, multigrid methods are not suitable. Adaptive mesh [11]
and multigrid [12] have been used in conjunction with geodesic active contours
for segmentation purpose. However the problem of segmentation is in some sense
dual to the geodesic extraction, in which we are not directly interested in the
level sets of the distance function.

2.3 Reducing Memory Usage

Classical methods, such as using an octree data structure, can be used to reduce
the memory usage of level set algorithms, for example in order to perform image
segmentation [11].

We chose to implement a simple data
structure to reduce the memory usage
by allocating the grid cell on the fly
during the propagation. A typical cell
data structure, for 2D computation, is:

cellNULL

(0,0)
(1,0)
(1,1)

NULL

NULL

NULLHash

NULL

NULL NULL

cell

cell

struct cell {
double distance; // current geodesic distance
char state; // either far, open or close
cell* neighbors[4]; }; // pointers to the 4 neighbors

To be able to retrieve a given cell in constant time, we also store the list of
allocated cells in a hash table. This is important because when a new cell is
allocated, we need to connect it to the existing cells. This pointer-based repre-
sentation of the neighboring relation is very convenient to extract the geodesic
with a gradient descent. There is some memory overhead due to the fact that we
explicitly store pointer to neighbors, but the fact that our scheme can explore
significantly less cells that the classical fast marching allows to save much more
memory, as shown in next section. The computing time overhead due to the use
of a hash table is about 40% in all our tests.

2.4 Numerical Validation

A Matlab implementation of our algorithm, together with the scripts needed to
reproduce the figures of this paper, is freely available on Matlab Central [13].

In order to estimate the precision of the results, we use the Hausdorff er-
ror between the found paths and the paths obtained by fast marching without
heuristic. On figure 6 one can see the geodesics extracted for different values
of λ. Figure 4 shows the result of our algorithm for various settings on (a) a
synthetic map and (b) a satellite image. We have depicted:
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Fig. 5. Influence of the resolution of the heuristic on the shape of the geodesic

• The 2D map: the red curves indicate the boundary of the visited region. One
can see that these curves shrink toward the geodesic (central blue curve) as
one increase the strength of the heuristic from 0% to 100%.

• Hausdorff error vs. heuristic strength λ: we have set the heuristic resolution
R to 50%. One can see that the error is higher for the synthetic map (a).
This is due to the fact that this map contains large flat areas, where a small
error in the computed geodesic distance leads to deviation of the extracted
geodesic. In contrast, the geodesic in the satellite image (b) contains very
anisotropic areas, which stabilize the extracted geodesic.

• Hausdorff error vs. heuristic resolution R: we have set the heuristic strength
λ to 50%. One can see that the synthetic map (a) is nearly insensitive to the
resolution of the coarse map used to compute the heuristic. This is because
the underlying function is very smooth, so one can reduce a lot the resolution
without too much impact on the accuracy of the Heuristic. In contrast, one
can see that the satellite image suffers from too huge variation when the
resolution parameter R becomes smaller than 60% and then again for 90%.
This is due to strong topological change in the path, as depicted in figure 5.
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100%
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0%1x
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0x

Fig. 6. Graphical display of extracted geodesics for various heuristic strengths

• Computation time saving vs. heuristic strength λ: the saving is computed
relatively to the time spent by the classical Fast Marching. In 2D the com-
putation times decrease roughly linearly with the strength of the heuristic.

• Computation time saving vs. heuristic resolution R (not shown): there is a
constant overhead due to the coarse resolution computation (which results in
an offset between the curves for R = 50% and R = 20%). For R = 20%, this
overhead is balanced by the heuristic saving as soon as λ � 5%.

These tests clearly show that our algorithm can bring a large computational
speed up, but the parameters should be finely tuned to adapt to the characteristic
of each map. For instance, these experiments show that the user must have some
prior knowledge about the typical width of the tubular structures he wants to
extract, and set the resolution R so that the coarse map VR still contains these
structures.

3 Applications

In this section, we show the versatility of our method by proposing various
applications where the extraction of geodesics is a central issue. We explain
why our algorithm can bring a speed improvement and allows us to use simpler
methods.

3.1 Volumetric Geodesics Extraction

3D geodesic extraction is very useful in medical volumetric data analysis. It
can be applied to perform tubular structures extraction, and it is extended to
virtual endoscopy in [1]. On figure 7 one can see the extraction of 3D geodesics
on synthetic data (top and middle rows) and on real medical data (bottom row)
for R = 20%. The red surface shows the boundary of the explored regions of
alive cells. The computation time gain (Comp. gain) is also indicated.

3.2 2D Path Planning

Direct application of AI techniques has been intensively used for path finding,
and A∗ is the method of choice for video games [2]. For the Euclidean case, faster
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Comp. gain -10% Comp. gain 15% Comp. gain 40% Comp. gain 80%

Fig. 7. Extraction of geodesics in 3D

and more complex graph-based methods have been proposed, such as visibility
graphs [14].

The Fast Marching method can be used to produce continuous paths with
a sub pixel precision [3], even when a non Euclidean metric is used. This is
very powerful since it allows the modeling of smooth obstacles (such as forest,
enemy repulsion, etc). In [15], the authors compare the Fast Marching and the
A∗ algorithms for path planning. However they do not go one step further and
connect these two powerful methods. On figure 3 one can see various paths
extracted from a 2D map for a resolution R = 20% and a varying λ. Although
the computed path can deviate from the real geodesic, our algorithm always
produces locally acceptable path (smooth and avoiding obstacles).

3.3 Constrained Path Planning

Geodesics can be used to compute the path of a robot with various shape and
motion constraints [16]. Basically, each additional degree of freedom add a new
dimension to the domain in which the front propagation should be performed.
Solving such high dimensional problems is time and memory consuming, so the
use of a heuristic is highly desirable. In our experiment, the most important issue
is the memory used by the full-grid classical Fast Marching, and the memory
management strategy exposed in subsection 2.3 is crucial to scale to complex
problems. The resolution R of the heuristic should be chosen carefully as a
function of the typical width of the corridors and rooms the robot must pass
through. In our tests we set R = 20% and we use a varying heuristic strength
λ. Note however that although our algorithm can produce a wrong path for
agressive heuristic usage, it never produces non-admissible moves.

On figure 8, one can see two examples of path extractions in 2D with one
rotational additional degree of freedom. This results in 3D front propagation,
and the corresponding speed function is depicted on the left. Figure 9 shows the
influence of the heuristic strength λ on the cells explored by the front propagation.



182 G. Peyré and L. Cohen

(a) (b)

Speed function P

Fig. 8. Examples of constrained path planning

Heuristic 0% 50% 80% 100%

Fig. 9. Explored area for constrained path planning

3.4 Globally Optimal Geodesic Active Contours

The concept of circular geodesics was first introduced in [17]. The authors of
[18] proposed a simple way to compute circular geodesics around a point, in
order to compute a globally optimal geodesic, with an application to object
segmentation. The user simply select a point C inside the object to segment and
then the algorithm virtually “cuts” the image along a horizontal line that links
C to the boundary of the image. This way, one can force a geodesic path to
go around C by running a classical Fast Marching from a point S to itself, but
forbidding the front to pass through the segment CD.

For an underlying image I, the globally optimal geodesic around C is defined
as the closed geodesic curve with minimum length, where the metric is defined as

g(x) =
1

||C − x||
1

1 + ||∇I(x)||2 + ε, (5)

where ||C − x|| is the distance from the curve point x to the center C.
The authors of [18] proposed a powerful algorithm based on the branch-and-

bound paradigm, which is a dichotomic search that avoids computing the closed
geodesic for each point S on the segment CD. However, with our heuristic front
propagation, we have tested a simpler algorithm that works well in practice. We
simply compute the circular geodesics that pass though a given fixed number of
points along the cut segment CD. These extractions can be performed quickly
using our heuristically driven front propagation, with the restriction that the
front should not pass though the cut segment.

In figure 10, we have shown a globally optimal circular geodesic, computed
with various heuristic strength λ.
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Heuristic 0% 40% 100%60% 80%

Fig. 10. Globally optimal circular path extraction with increasing heuristic

3.5 Geodesic Extraction on 3D Meshes

The Fast Marching algorithm has been extended to 3D meshes in [19]. Our
heuristic algorithm also extends to 3D meshes, with the following modifications
with respect to the Euclidean setting:

• We must construct a coarse mesh approximation of the original 3D mesh.
Mesh simplification is a large topic, and several greedy methods exist, see for
example [20]. In our tests, we use the farthest point strategy proposed in [21]
for remeshing, since it uses the Fast Marching as a building block.

• Once the heuristic function has been computed on the coarse mesh, it must be
interpolated on the original dense mesh. Several methods for data interpola-
tion on 3D meshes exist, and we have used a method derived from harmonic
mesh parameterization [22]. This involves the resolution of a sparse linear
system that searches a harmonic function that fits the values computed on
the coarse mesh.

These two steps are quite computationally intensive, but note that:

• The coarse mesh can be pre-computed, and can be re-used for multiple geo-
desic extraction.

• To avoid the computational overhead of computing once for all the interpo-
lation on the whole mesh, we use the local parameterization strategy of [23].
We compute the interpolation only on a small set of overlapping disk-like
charts that covers the region of alive vertices.

Coarse mesh Heuristic 0% 50% 100%90%

Fig. 11. Heuristically driven front propagation on 3D meshes
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On figure 1 and 11, one can see the algorithm in action on various meshes, and
for various values of the parameter λ.

4 Conclusion

In this paper we have presented a simple modification of the Fast Marching to
speed up the computation time and the memory requirement of the algorithm.
This modification is straightforward to implement, since it only involves the com-
putation of a multiresolution heuristic to propagate the front toward the correct
direction. Numerical tests on synthetic and real data show that this modifica-
tion does not result in large distortion of the extracted curve. We examine some
potential applications of this algorithm and show that it fits nicely into various
existing computational frameworks.
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Abstract. Given an image, digital matting consists in extracting a fore-
ground element from the background. Standard methods are initialized
with a trimap, a partition of the image into three regions: a definite
foreground, a definite background, and a blended region where pixels
are considered as a mixture of foreground and background colors. Re-
covering these colors and the proportion of mixture between both is an
under-constrained inverse problem, sensitive to its initialization: one has
to specify an accurate trimap, leaving undetermined as few pixels as
possible.

First, we propose a new segmentation scheme to extract an accurate
trimap from just a coarse indication of some background and/or fore-
ground pixels. Standard statistical models are used for the foreground
and the background, while a specific one is designed for the blended re-
gion. The segmentation of the three regions is conducted simultaneously
by an iterative Graph Cut based optimization scheme. This user-friendly
trimap is similar to carefully hand specified ones.

As a second step, we take advantage of our blended region model to
design an improved matting method coherent. Based on global statistics
rather than on local ones, our method is much faster than standard
Bayesian matting, without quality loss, and also usable with manual
trimaps.

1 Introduction

The commonly used model of digital or alpha matting is the following. An image
I is considered as a mixture between a foreground IF and a background IB ,
mixture quantified by an alpha mask α ∈ [0, 1]. For each pixel x, this writes

I(x) = α(x)IF (x) + (1− α(x))IB(x) (1)

Such a blending has multiple reasons: transparent objects, aliasing, blur or mo-
tion blur. The problem is to recover IF , IB and α from I.

This inverse problem is under-constrained and can not be solved without
priors. Historically, a solution was proposed in the case of a known constant
background, e.g. a blue screen [1]. Recently, inspired by computer vision tech-
niques, methods based on a model of the foreground and of the background were

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 186–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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proposed that greatly improve the matte quality, even without a blue screen.
Since the pioneering work of Ruzon and Tomasi [2], several methods have been
proposed [3,4,5,6].

As a prerequisite of any method, the user has to specify a so-called trimap,
partitioning the image into three regions: a set ΩF of definitely foreground pixels
(where α will always be 1), a set ΩB of definitely background pixels (α = 0),
and a blended region ΩM where α, IF and IB are unknown. ΩM has to be
an intermediate region, separating ΩF from ΩB. Matting methods suffer from
sensitivity to this initial condition and one has to specify it accurately, leaving
undetermined as few pixels as possible. Moreover, when too small ΩF and ΩB

are given, the matting process generally does not work at all.
Digital matting was primitively developed for movie production. For a spe-

cialist, carefully specifying a trimap is a long but feasible process (actually faster
and easier than alpha masking). Today, extracting a subject from a picture for
editing purpose becomes a standard in a non professional context. Speed be-
comes also an issue, particularly with the ever increasing resolution of digital
cameras.

This paper addresses both user-friendly trimap design and speed. First, we
propose a trimap segmentation scheme from just a small subset of the back-
ground and/or foreground, that can be for instance specified by the user with a
brush-like tool. Standard Gaussian Mixture Models (GMMs) are used for fore-
ground and background modeling, while a specific statistical model is proposed
for the blended region. To save the user from specifying some obscure number of
components, the GMMs parameters are determined with a coupled Expectation
Maximization (EM) / Minimum Description Length (MDL) scheme. For the sake
of speed, the segmentation of the three regions is conducted simultaneously by
an iterative Graph Cut based optimization. The resulting trimap proves to be
similar to carefully hand specified ones.

As a second step, we take advantage of our blended region model to design
an improved matting method. Based on global statistics rather than on local
ones, our method is much faster than the original Bayesian matting, although
without quality loss. It can also be used with manually designed trimaps.

2 Related Work

The original work of Ruzon and Tomasi [2] laid the foundations of most of the
actual methods, for which the key point consist in modeling the background and
the foreground with some statistical model. In their famous Bayesian Matting,
Chuang et al. [3] improved both the statistical model and the way to use it
to recover the alpha mask and the original background and foreground colors.
Since then, Rother et al. proposed GrabCut [7,8], a method inspired by Boykov
and Jolly work [9], where the image is actually segmented into two regions using
an iterated Graph Cuts [10] scheme. A smooth alpha mask is then modeled
as a ramp of variable width to be estimated. As a result, it is unadapted to
non smooth objects like hairs or trees. The GrabCut method does not need
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a trimap. It can be seen more as a two regions segmentation with a smooth
transition between the two regions, than as a strictly speaking digital matting
method. However, as another member of iterated Graph Cuts methods [9], our
trimap segmentation has similarities with the segmentation step of GrabCut.

In their Poisson Matting, Sun et al. propose another prior on α, based on its
gradient and Poisson equations, already used in image editing [5]. Their method
supply different modes, refinements and filters, manually invoked by the user.
Again, priors on α or its gradient can be questionable as the blending might have
different origins and the blended objects different scales with respect to pixels
size. Moreover, manual decisions might limit the usability of this technique for
non specialists. In conclusion, Bayesian matting can be considered as the less
ad-hoc method so far. Its weak points are the need of an accurate trimap (a
problem common with other matting techniques) and its slowness due to many
local statistics estimations. Figure 1 demonstrates how a coarse trimap affects
digital matting.

To our knowledge, the only works addressing trimap design are video ori-
ented. Following the original work by Mitsunaga et al. [11], one can specify
trimaps for some key frames and interpolate them in the intermediate frames.
In their recent work, Xiao and Shah [12] proposed an occlusion based trimap
extraction couple with motion layer segmentation. However, it is unusable not
only for still pictures but also in real film production where motion is often fast
and/or heavily blurred.

This paper is organized as follows. First, section 3 exposes the background-
foreground model and our parameters estimation method. Then, section 4 in-
troduces the trimap segmentation, details its implementation, and compares it
with manual segmentations. Finally, section 5 proposes an improved fast, global
and accurate matting method, and shows results.

Fig. 1. Sensitivity of Bayesian matting [3] to the trimap. First row: the original image,
an accurate trimap and its corresponding alpha. Second row: a coarse trimap and its
alpha. Third row: same as rows 1 and 2 for another image.
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3 Unsupervised Two-Regions Segmentation

As a first step toward our trimap segmentation, we first focus on segmenting
an image into two regions, each of them having its own characteristics, a-priori
unknown. This often called Unsupervised Segmentation has recently received a
lot of attention from the Computer Vision community. Many approaches have
been proposed, among which some Level Set [13,14] based methods (e.g. [15,16]).
More recently, using the Graph Cuts framework, Boykov and Jolly initiated
an iterated method [9], further developed by Rother et al. in [7] and in their
GrabCut scheme [8].

In this section, we briefly describe the segmentation part of the GrabCut
scheme. Already known to the GrabCut aware reader, the content of this section
introduces definitions and notations. The slight difference with the original work
is that we plead for a more sophisticated parameter estimation method, EM
+ MDL based, mathematically more justified, more user-friendly, and yielding
somehow better results.

Let I be a color image defined over a domain Ω. For all x ∈ Ω, I(x) is a pixel
defined in a color space (e.g. RGB or CieLab). Let ΩU be a part of Ω specified
by the user. Our goal here is to segment Ω into two ”coherent” regions that
we will abusively still call the background and the foreground, respectively still
denoted by ΩB ΩF , such that ΩU ⊂ ΩB .

3.1 Region Modeling

Following previous work and using a statistical approach, each region ΩX (X =
F or B) is modeled by a Probability Density Function (PDF) approximated by
a Gaussian Mixture Model (GMM):

pX(I) =
NX∑
i=1

πX
i GμX

i ,ΣX
i

(I) with
NX∑
i=1

πX
i = 1 and πX

i ∈ [0, 1]

Each component is represented by a Gaussian of mean μX
i and covariance ΣX

i :
Gμ,Σ(I) = |Σ|1/2

(2π)3/2 e
−(I−μ)T Σ−1(I−μ)/2 and πX

i is the prior of the ith component
with respect to all components, i.e. its proportion in the mixture.

Estimating the parameters ΘX = {NX , (πX
i , μX

i , ΣX
i )i=1..NX} is a widely

studied problem. For a given NX , one can use the K-Means algorithm (see [17]), a
fast but approximate method. This method is widely sensitive to its initialization.
Moreover it does not provide a likelihood maximum, which is not appropriate
for a segmentation based on likelihood maximization. Indeed the K-Means just
solves:

(μX
i , ΣX

i ) = arg min
(μi,Σi)

∑
x∈ΩX

∥∥I(x) − μk(I(x))
∥∥2

Σk(I(x))

with k(I) = argmink ‖I − μk‖2Σk
, ‖I − μ‖Σ being the Mahalanobis distance be-

tween I and μ with respect to Σ. Note that [7] suggests [18] as a variant and
that [3] uses the method in [19]. We prefer the EM algorithm [20,21]. It is much
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more robust with respect to the initial parameters and provides a likelihood
maximum, solving:

(πX
i , μX

i , ΣX
i ) = arg min

(πi,μi,Σi)

∑
x∈ΩX

p(I(x))

Finally, we combine the EM algorithm with a MDL [22] estimation of NX ,
saving the user from manually adjusting the number of Gaussian components.
Note that we have also tested more recent algorithms like Split and Merge EM
[23], without any significant improvement.

3.2 Energy Design

Let γ be the partition function of Ω into ΩF and ΩB: γ (x) = F if x ∈ ΩF ,
γ (x) = B otherwise. Under the hypothesis that regions are independent with
respect to their color distribution, it is natural to use the posterior probability
of the pixels as a segmentation criterion, thus stating the problem as minimizing
an energy:

Edata(γ) =
∫

Ω

−log pγ(x) (I (x)) dx (2)

An extra control term should be added to constrain the smoothness of the so-
lution which is often addressed as a local smoothness constrain: neighbor pixels
should belong to the same region. This yields an additional smoothness energy:

Esmooth(γ) =
∫

Ω

(∫
y∈N (x)

V (x, y) dy

)
dx (3)

where N (x) is a local neighborhood of x and V (x, y) = V0 (x, y) if γ (x) �=
γ (y) with V (x, y) = 0 otherwise.

Under the assumption that the frontier between the two regions corresponds
to high image gradients, a frequent choice is V0 (x, y) = κ exp(− ‖I(x)−I(y)‖2

2σ2 )
where κ is some positive constant controlling the degree of smoothness and σ is
set as in [9]. The global energy to minimize ends to:

E (γ) = Edata (γ) + Esmooth (γ) (4)

3.3 Implementation and Comparison

When minimizing E either with a Level Sets Method approach [24,25] or with a
Graph Cuts one [9], one should be aware of the dependency of the PDFs upon γ.
This leads to an iterated process that is usual in the Level Sets gradient descent,
but is not in the case of Graph Cuts. As we do not need sub-pixel accuracy, we
opt for a Graph Cuts approach, mainly for speed reasons. Using EM instead of K-
means is theoretically important: the algorithm consists in alternately updating
the PDFs according to the segmentation and in segmenting according to the
PDFs. At each step, the energy decreases:
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Table 1. Weights associ-
ated to node p

link weight for
ts,p 0 p ∈ ΩU

tp,t ∞ p ∈ ΩU

ts,p DB(p) p 
∈ ΩU

tp,t DF (p) p 
∈ ΩU

tp,q V(p, q) q ∈ N (p)

Fig. 2. Importance of then EM estimation and reliability
of the MDL criterion. Original image with background
specification in red (left) and the corresponding segmen-
tations using the method in [7] with fixed NF = NB = 5
(middle) and our EM/MDL approach (right)

– Updating the PDF using EM ensures that Edata decreases, Esmooth being
fixed.

– The Graph Cuts step ensures that E decreases.

Let us just recall useful notations [26]. We consider a graph G = 〈V , E〉 that
is a set of nodes V and directed edges E connecting them. Two special terminal
nodes are present: the source s and the sink t. Each edge (p, q) connecting a
node p to a node q is assigned a weight tp,q. Edges are broken in two groups:
n-links and t-links. A n-link is an edge connecting two non-terminal nodes. A
t-link connects a non-terminal node to a terminal node. A cut C is a partitioning
of the nodes of the graph into two disjoint subsets S et T such that the source
s ∈ S and the sink t ∈ T . Its cost is the sum of the weights of all edges (p, q)
such that p ∈ S and q ∈ T . A minimum cut is a cut with minimal cost and one
minimum cut can be determined in polynomial time with a max-flow extraction
algorithm.

Here, each pixel of the image is associated to a node and to edges for each
of its neighbors. Each node is also connected to the sink and the source. The
weights on the t-links deal with data constrain and those on the n-links account
for smoothness. For a pixel x associated to node p, let DX be the negative
logarithm of the probability density function associated to region ΩX : DX(p) =
− log pX (I (x)). The Graph is built according to table 3.3. After the cut, the
nodes that are still connected to the source, are assigned to ΩF , the others to ΩB .
Figure 2 shows the result of this segmentation process on some test image using
both the method in [7] and a method using an EM/MDL estimation. Note that
some details misclassified by the original method are correctly handled by the
EM/MDL approach. Yet, these improvements are not decisive. More important
is the fact that the MDL based estimation of NX proves to be reliable and masks
one annoying parameter from the user.

4 Trimap Segmentation

With these notations in hand, let us go back to our main goal of segmenting a
trimap. Assuming that the blended region will also be modeled by a PDF pM (I),
still to be modeled, the data driven part of the energy is unchanged and given
by equation (2) with a new partition function that reflects the 3 regions.
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However, keeping the same smoothing term is a nonsense. A high image
gradient does not indicate a frontier between two regions anymore. Instead, we
use the length of the frontiers separating the regions as a smoothing energy.
Classical in the Level Set framework and inducing mean curvature motion, this
can also be handled rigorously in an Markov Random Field framework (see
[27]). Here, we will restrict ourselves to an approximation, just replacing the
previous V0(x, y) to a decreasing function of the distance between x and y (e.g.
V0(x, y) = κ/(1 + d(x, y))).

Keeping the same GMM models for pB and pF , we still have to design a
model for pM in order to define the energy to minimize.

4.1 A PDF for ΩM

A straightforward solution would be to take a third GMM for pM and to esti-
mate its parameters ΘM = {NM , (πM

i , μM
i , ΣM

i )i=1..NM } via the same EM/MDL
scheme as for pB and pF . It would be a mistake. Indeed, pM is not independent
from pB and pF : in ΩM , I, IF and IB are related by equation (1). Despite this,
one could willingly ignore this dependency and try to segment (ΩB , ΩM , ΩF )
as three regions with each one its own independent GMM. Unfortunately, it is
not obvious that the resulting iterated minimizing process will converge to the
desired regions without a very accurate initialization, specifying pixels of the
three regions. On the contrary, making pM depend on pB and pF will turn out
to be sufficient to keep a coarse initialization ΩU .

Let us examine equation (1). We will assume for simplicity that both IF and
IB come from one single Gaussian of the respective GMMs pF and pB. In their
Bayesian estimation of layers from multiple images, Wexler et al. [4] assume that
α follows a Beta law. Yet, they choose the parameters of the Beta distribution
by estimating them on some reference image. Thus, although Kitamoto gives
in [28,29] a Gaussian approximation of a mixture of two Gaussian distributions
when the mixture coefficient follows a Beta Law, we prefer to simply consider
that α follows a uniform law. In that case, if IF comes from GμF

i ,ΣF
i

and IB

from GμB
j ,ΣB

j
, the distribution of I can be approximated by another Gaussian

GμM
ij ,ΣM

ij
, given also by Kitamoto in [28,29] as:

μM
ij =

μF
i + μB

j

2
and ΣM

ij =
1
3
(
ΣF

i + ΣB
j

)
+

1
12

(
μB

j − μF
i

) (
μB

j − μF
i

)T
(5)

Note that this is, again, an approximation and that more sophisticated models
could be investigated. Actually, our simple assumption of a uniform α, and of
a Gaussian approximation for I, will turn out to give good results. With this
choice, it is natural to model pM with another GMM, whose NM = NFNB

components are now fixed and dependent on pF and pB:

pM (I) =
NF∑
i=1

NB∑
j=1

πM
ij GμM

ij ,ΣM
ij

(I) (6)
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link weight for
ts,p0 ∞ p ∈ ΩU

tp0,p1 ∞ p ∈ ΩU

tp1,t 0 p ∈ ΩU

ts,p0 DF (p) p 
∈ ΩU

tp0,p1 DM (p) p 
∈ ΩU

tp1,t DB(p) p 
∈ ΩU

tpi,qi V(p, q) q ∈ N (p)

Fig. 3. Trimap segmentation. Graph representation for two nodes p and q and associ-
ated weights.

where
∑

ij πM
ij = 1 and where the (μM

ij , ΣM
ij ) are given by equation (5). The only

free parameters are the (πM
ij ), and we estimate them with an EM algorithm on

ΩM .

4.2 Graph Cuts Implementation

As we assume that the blended region ΩM separates ΩF from ΩB, we can use
the Graph Cuts implementation described in [30] which is simpler than the usual
α-expansion based algorithm and provides a global minimum. Each pixel x is
represented by two nodes p0 and p1. The graph is built according to figure 3.
After the cut, each node is labeled according to the following rule:

– If the link between {s, p0} is cut, the node is assigned to the foreground.
– If the link between {p0, p1} is cut, the node is assigned to the blended region.
– If the link between {p1, t} is cut, the node is assigned to the background.

Here we use the method described by Kolmogorov and Zabih in [10] to force
the algorithm to cut one and only one of the three links {s, p0}, {p0, p1} and
{p1, t}. It consists in adding infinite reverse edges on the graph (see red links on
figure 3). Like in the two regions case, we use an iterative scheme. However we
found that using the two regions segmentation as a first step gives good initial
estimates for pB and pF and speeds up the convergence.

4.3 Results

Figure 4 shows the trimap obtained for the reference image in [3] from just
a coarse indication of the background. It is similar to the hand designed one
used in the original work. For comparison purposes, we show also the trimap
obtained when naively modeling the blended region with an independent GMM,
even when starting from a more accurate initialization. Figure 6a and 6b in next
section show many other automatic trimaps. Table 4.3 gives the running times of
the trimap extraction (and of the first step of two regions segmentation) for some
of our test images, on a standard 2.4GHz PC without any specific optimization.
These are the times for a complete convergence and the process might be stopped



194 O. Juan and R. Keriven

Table 2. Running times for
trimap segmentation on some test
images

Image First step Total time
Teddy Bear 36s 94s
Butterfly 14s 28s

Light 48s 133s

Fig. 4. Automatic trimaps. First column: the original image and the hand designed
trimap used in [3]. Second column: background/foreground initialization (in red/white)
and the obtained trimap, naively considering pM as an independent GMM. Third col-
umn: background only initialization (in red) and the trimap obtained with our method

before. A multi-scale approach would also improve speed significantly. Anyway,
these are to be compared with the times needed for a cautious manual segmen-
tation, depending on the user’s ability and/or equipment. Note that the more
complex a manual segmentation would be, the more the automatic segmentation
seems to require time to converge (see images on figures 6a and 6b).

5 An Improved Matting Method

In this section, we propose a new matting algorithm taking advantage of our
blended region model. Based on global statistics rather than on local ones, it is
faster than the original Bayesian matting, although without quality loss.

Chuang et al.’s Bayesian matting algorithm is based on estimating local
statistics of the foreground and of the background. For each pixel in the blended
region, a neighborhood is considered, where the foreground and the background
are respectively modeled by two Gaussian distributions GμF

loc,ΣF
loc

and GμB
loc,ΣB

loc
.

Estimating a local mean and covariance for each pixel is inefficient from a
computational point of view. Moreover, limiting the distribution of the neighbor-
hood of a pixel to one single Gaussian may sometimes be a too coarse approxima-
tion. We propose to take advantage of our global GMM analysis of the foreground
and the background carried out during the segmentation process. Keeping the
assumption that IF and IB come from one Gaussian each, we choose these two
Gaussian distributions respectively among the components of pF and pB. We use
πM

ij GμM
ij ,ΣM

ij
(I) to measure which Gaussian distributions most probably explain

I. Thus, we simply:

1. choose the pair (i0, j0) that maximizes πM
ij GμM

ij ,ΣM
ij

(I)
2. use Chuang et al.’s solving scheme with GμF

i0
,ΣF

i0
and GμB

j0
,ΣB

j0
as priors for

IF and IB instead of the local estimations GμF
loc,ΣF

loc
and GμB

loc,ΣB
loc

.

The resulting process turns out to be faster than the original method and the
results are similar. Note that it is essential that the GMMs have enough com-
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Table 3. Running times for
the standard Bayesian mat-
ting and for our method on
some test images

Image Bayesian Our
matting matting

Teddy Bear 47s 0.36s
Butterfly 2.7s 0.027s

Light 37s 0.27s

Fig. 5. From top to bottom, left to right: three alpha masks (ground truth, Bayesian
matting using our trimap, our method using our trimap), a recompositing using our
mask and foreground estimations

Fig. 6. a. For each image, in reading order: original image, user’s initialization, au-
tomatic trimap, Bayesian matting, our matting, recompositing. b. On each line, from
left to right: user’s initialization, automatic trimap, our matting, recompositing.

ponents to explain all the colors/textures locally present in the image. Our
EM/MDL estimation ensures this.

6 Results

In their original work on Bayesian matting, Chuang et al. proposed a real bench
image, supplying a ground truth for the alpha mask (see [3]). Figure 5 shows
this true mask, compared those obtained with their and our matting algorithm,
using our automatic trimap in both cases. The result are similar and the relative
errors, in L2 norm in region ΩM , respectively gives 1.5% and 1.4% errors.

As expected, the main advantage of our method is its computational effi-
ciency. Table 5 gives the running times of both methods for some of our test
images, under the same conditions as previously (standard 2.4GHz PC, no spe-
cific optimization). We observed a speedup of about 100. Please note that this
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would also stand when starting from a manual trimap. The only overhead for
our matting would be to estimate the global statistics from this trimap before
running, which is actually negligible with respect to the matting process.

Finally, figures 6a and 6b show the complete process of our method on several
test images: the original images (figure 6a only), the user’s initialization, the
segmented trimap, the mask obtained with Bayesian matting (fig. 6a only),
the one obtained with our method, and a recompositing from our (α, IF , IB)
estimation. It demonstrates how a simple initialization without any additional
parameter (e.g. number of Gaussian distributions) is enough to get accurate
trimaps, and how our fast matting method gives results similar to the ones
obtained with the original but slower Bayesian matting.

7 Conclusion

In this paper, we propose a segmentation method aimed at extracting an accu-
rate trimap for the digital matting problem. A statistical model is specifically
designed for the blended region and an iterative Graph Cut based optimization
scheme allows this trimap segmentation from just a coarse specification of some
background and/or foreground pixels. This trimap is similar with those obtained
by a meticulous hand drawing. Finally, taking advantage of this blended region
model, we describe a improved digital matting method, based on global statis-
tics, much faster than the original Bayesian matting, although without quality
loss. This method is also usable starting from a manual trimap.
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Abstract. In this paper we propose a novel variational technique for the knowl-
edge based segmentation of two dimensional objects. One of the elements of
our approach is the use of higher order implicit polynomials to represent shapes.
The most important contribution is the estimation of uncertainties on the regis-
tered shapes, which can be used with a variable bandwidth kernel-based non-
parametric density estimation process to model prior knowledge about the object
of interest. Such a non-linear model with uncertainty measures is integrated with
an adaptive visual-driven data term that aims to separate the object of interest
from the background. Promising results obtained for the segmentation of the cor-
pus callosum in MR mid-sagittal brain slices demonstrate the potential of such a
framework.

1 Introduction

Over the last decade, shape-based segmentation methods have become more and more
common. First introduced in 1995, active shape models (ASM) and active appearance
models (AAM) [3] have been very popular tools for the segmentation of anatomical
structures in medical images [2,5,1,10]. More recently, principal component analysis
(PCA) has also been applied to distance transforms for an implicit representation of
shapes [9]. Shape-based segmentation is usually equivalent to recovering a geometric
structure which is both highly probable in the model space and well aligned with strong
features in the image. The advantage of the shape based methods over classical de-
formable templates [11] is that they allow the deformation process to be constrained
to remain within the space of allowable shapes. These methods have proven to be a
good compromise between complexity and shape generalization. However, since mod-
eling is performed after registration, errors in the registration can be propagated into the
model space. Furthermore, the assumption of Gaussian shape models might be a little
restrictive.

In this paper, shapes are represented implicitly using the distance transform. To
generate a model of the structure of interest, we register shape examples using a spline
based free form deformation. The main contribution of this paper is the derivation of

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 198–209, 2005.
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a measure representing the uncertainty of the registration at the zero iso-surface. Af-
ter dimensionality reduction, these measures are combined with a variable bandwidth
kernel-based approach to derive a density function that models the family of shapes
under consideration. Given a new image, the segmentation process is expressed in a
variational level set framework [14] where the energy function makes use of the un-
certainties of the registration between the deformed shape which aligns to the image
features and the model.

We apply our novel modeling and segmentation technique to the case of the corpus
callosum. The corpus callosum is a thick bundle of nerve fibers that connect the left and
right hemispheres in the brain. It is believed to be responsible for balancing the load of
learning tasks across each hemisphere, making each specialized in certain tasks. While
not learning, it is responsible for routing most of the communication between the two
hemispheres. This is the reason why a surgical procedure has been developed to cut the
corpus callosum in patients with severe epilepsy for which drug treatment is ineffective.
In addition, several studies indicate that the size and shape of the corpus callosum is re-
lated to various types of brain dysfunction such as dyslexia [4] or schizophrenia [6].
Therefore, neurologists are interested in looking at the corpus callosum and analyzing
its shape. Magnetic resonance imaging (MRI) is a safe and non-invasive tool to image
the corpus callosum. Since manual delineation can be very time consuming, we demon-
strate how our algorithm can be used to segment the corpus callosum on mid-sagittal
MR slices.

The remainder of this paper is organized as follows. In Section 2, we introduce reg-
istration with uncertainties and probabilistic modeling to describe the corpus callosum
structure. The segmentation component combining data and shape terms is described
in Section 3. Experimental results are presented in Section 4. Finally, conclusions and
future directions are discussed in Section 5.

2 Shape Representation Through Implicit Polynomials

Let us consider a training set {C1, C2, ..., CN} of shapes representing the structure of
interest. The model building task consists of recovering a probabilistic representation
of this set. In order to remove all the pose variation from the training set, all shapes
have to be registered to a common pose with respect to an affine transformation. Then
a reference model CM is locally registered to every sample of the training set Ci using
implicit polynomials. We will first describe the registration process and the calculation
of uncertainties on the registered model. The uncertainty measures represent the allow-
able range of variations in the deformations of the model that still match Ci. Then we
describe the way these uncertainties are used in the estimation of probability density
function of the deformations.

2.1 Registration Through Implicit Polynomials

In the classical ASM the initial step is used to recover explicit correspondence between
the discretized contour of the model shape and the training examples. In the present
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framework, the model shape is non rigidly registered to every sample from the train-
ing, and the statistical shape model is actually built on the parameters of the recovered
transformation.

Shapes Ci are represented in an implicit fashion using the Euclidean distance trans-
form [9,15] . In the 2D case, we consider the function defined on the image domain
Ω :

φCi(x) =

⎧⎨⎩
0, x ∈ Ci

+D(x, Ci), x ∈ RCi

−D(x, Ci), x �∈ RCi

where RCi is the region enclosed by Ci. Such a space is invariant to translation, rota-
tion and can also be modified to account for scale variations. This representation has
already been used along with simple criteria like sum of squared differences to address
similarity registration [15] or mutual information for affine transformations [7].

The retained framework for density estimation does not put any constraint on the
reference model used for registration. In practice we choose a shape characteristic of
the object to segment. Without loss of generality, we can choose for CM a smoothed
version of C1. All contours of the training set are now registered to CM with respect to
an affine transform and from now on, we will denote {C1, C2, ..., CN} as the globally
registered training set.

Local registration is crucial to model building. To this end one would like to recover
an invertible transformation (diffeomorphism) LΘi parameterized by a vector Θi that
creates a one to one mapping between each contour of the training set Ci and the model
CM:

LΘi : R2 →R2 and LΘi(CM) ≈ Ci

When LΘ is chosen as a 2D polynomial with coefficients Θ in an appropriate basis,
the expression φ ◦ LΘ inherits the invariance properties of implicit polynomials, i.e.
linear transformations applied to Θ are related to linear transformations applied to the
data space. In the present paper, we used a simple polynomial warping technique to
address the demand of local registration: the free form deformations method (FFD)
[16]. The essence of FFD is to deform an object by manipulating a regular control
lattice overlaid on its embedding space. We use a cubic B-spline FFD to model the
local transformationL. Consider the M×N square lattice of points, [{P0

m,n}; (m,n) ∈
[1;M ]× [1;N ]]. In this case the vector of parameters Θ defining the transformation L
is the displacement coordinates of the control lattice. Θ has size 2MN :

Θ = {δPx
m,n, δP

y
m,n}; (m,n) ∈ [1;M ]× [1;N ]

The motion of a pixel x given the deformation of the control lattice, is defined in terms
of a tensor product of Cubic B-splines [17]. As FFD is linear in the parameter Θ = δP,
it can be expressed in a compact form by introducingX (x) a [2× 2MN ] matrix:

L(Θ;x) = Bi(u)Bj(v)(P0
i,j + δPi,j) = x + X (x)Θ

where (u, v) are the coordinates of x, and (Bi, Bj) the cubic B-spline basis functions.
Local registration now is equivalent to finding the best lattice configuration such

that the overlaid structures coincide. Since structures correspond to distance transforms
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of globally aligned shapes, the sum of squared differences (SSD) can be considered
as the data-driven term to recover the deformation field L(Θ;x) between the element
Ci of the training set and the model CM (corresponding respectively to the distance
transform φi and φM)

Edata(Θ) =
∫∫

Ω

χα(φi(x)) [φi(L(Θ;x)) − φM(x)]2 dx (1)

with χα(φi(x)) being an indicator function that defines a band of width α around the
contour. In order to further preserve the regularity of the recovered registration, one
can consider an additional smoothness term on the deformation field δL. We consider a
computationally efficient smoothness term :

Esmooth(Θ) =
∫∫

Ω

(
|Lxx(Θ;x)|2 + 2 |Lxy(Θ;x)|2 + |Lyy(Θ;x)|2

)
dx.

The data-driven term and the smoothness constraint component can now be integrated to
recover the local deformation component through the calculus of variations. We denote
as Θi the reached minimum.

However, one can claim that the local deformation field is not sufficient to charac-
terize the registration between two shapes. Data is often corrupted by noise so that the
registration retrieved using a deformable model may be imprecise. Therefore, recov-
ering uncertainty measurements [8] that do allow the characterization of an allowable
range of variation for the registration process is an eminent condition of accurate shape
modeling.

2.2 Uncertainty Estimation on Registered Shapes

We aim to recover uncertainties on the vector Θ in the form of a [2MN × 2MN ]
covariance matrix by adapting a method initially introduced in [18]. We are considering
the quality of the local registration on shapes, that is the zero levelset of the distance
transform. Therefore, Edata is formulated in the limit case where α the size of the
limited band around the model shape tends to 0. The data term of the energy function
(1) can now be expressed as:

Edata(Θ) =
∮
CM

φ2
i (L(Θ;x))dx =

∮
CM

φ2
i (x

′)dx,

where we denote x′ = L(Θi;x). Let us consider q to be the closest point from x′

located on Ci. As φi is assumed to be a Euclidean distance transform, it also satisfies
the condition ‖∇φi(x′)‖ = 1. Therefore one can express the values of φi at the first
order in the neighborhood of x′ in the following manner :

φi(x′ + δx′) = φi(x′) + δx′ · ∇φi(x′) + ◦(δx′)
= (x′ + δx′ − q) · ∇φi(x′) + ◦(δx′)

This local expression of φi with a dot product reflects the condition that a point to curve
distance was adopted. Under the assumption that Edata is small when reaching the
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Fig. 1. Implicit higher order polynomials and registration of corpus callosum with uncertainty
estimates (this figure should be seen in color)

optimum, we can write the classical second order approximation of quadratic energy in
the form:

Edata(Θ) =
∮
CM

[(x′ − q) · ∇φi(x′)]2 =
∮
CM

[(x + X (x)Θ − q) · ∇φi(x′)]2

Localizing the global minimum of an objective function E is equivalent to find-
ing the major mode of a random variable with density exp(−E/β). The coefficient β
corresponds to the allowable variation in the energy value around the minimum. In the
present case of a quadratic energy (and therefore Gaussian random variable), the co-
variance and the Hessian of the energy are directly related by Σ−1

Θi
= HΘi/β. This

leads to the following expression for the covariance :

Σ−1
Θi

=
1
β

∮
CM

X (x)T .∇φi(x′).∇φi(x′)T .X (x)dx

In the most general case one can claim that the matrix HΘ is not invertible because
the registration problem is under-constrained. Then, additional constraints have to be
introduced towards the estimation of the covariance matrix of Θi through the use of an
arbitrarily small positive parameter γ :

E(Θ) =
CM

(x + X (x)Θ − q) · ∇φi(x′) 2
dx + γ ΘT Θ

This leads to the covariance matrix for the parameter estimate :

ΣΘi = β
CM

X (x)T .∇φi(x′)∇φi(x′)T X (x)dx + γI
−1

(2)
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2.3 Hybrid Kernel Based Density Function and Kernel Selection

Now that all shapes of the training set have been aligned, standard statistical techniques
like PCA or ICA could be applied to recover linear Gaussian models. But in the most
general case shapes that refer to objects of particular interest vary non-linearly and
therefore the assumption of simple parametric models likes Gaussian is rather unrealis-
tic. Therefore within our approach we propose a non-parametric form of the probability
density function.

Let {Θ1...ΘN} be the N vectors of parameters associated with the registration of
the N sample of the training set. Considering that this set of vectors is a random sample
drawn from the density function f describing the shapes, the fixed bandwidth kernel
density estimator consists of:

f̂(Θ) =
1
N

N∑
i=1

1
‖H‖1/2 K

(
H−1/2(Θ−Θi)

)
where H is a symmetric definite positive (bandwidth matrix) and K denote the centered
Gaussian kernel with identity covariance. Fixed bandwidth approaches often produce
under-smoothing in areas with sparse observations and over-smoothing in the opposite
case.

Kernels of variable bandwidth can be used to encode such a condition and provide a
structured way for utilizing the variable uncertainties associated with the sample points.
In the literature, kernel density estimation methods that do rely on varying bandwidths
are generally referred to as adaptive kernels. Density estimation is performed with ker-
nels whose bandwidth adapts to the sparseness of the data [19].

In the present case, the vectors {Θi} come along with associated uncertainties
{Σi}. Furthermore, the point Θ where the density function is evaluated corresponds
to a deformed model, and therefore is also associated to a measure of uncertainty Σ. In
order to account for the uncertainty estimates both on the sample points themselves as
well as on the estimation point, we adopt a hybrid estimator [12].

f̂H(Θ, Σ) =
1
N

N

i=1

K(Θ, Σ, Θi, Σi)

=
1
N

N

i=1

1
‖H(ΣΘ, ΣΘi)‖1/2 K(H(ΣΘ, ΣΘi)

−1/2(Θ − Θi)

where we choose for the bandwidth function: H(ΣΘ, ΣΘi) = ΣΘ +ΣΘi as proposed
in [12]. Using this estimator, the density decreases more slowly in directions of large
uncertainties when compared to the other directions.

This metric can now be used to assess the probability of a new sample being part
of the training set and account for the non-parametric form of the observed density.
However, the computation is time consuming because it leads to the calculation of large
matrix inverses. Since the cost is linear in the number of samples in the training set,
there is an eminent need to decrease its cardinality by selecting the most representative
kernels.
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Fig. 2. Histograms of the corpus callosum and the background area. The of a use gaussian mixture
to model the corpus callosum and background intensity distribution in MR is appropriate (this
figure should be seen in color).

The maximum likelihood criterion expresses the quality of approximation from the
model to the data. We use a recursive sub-optimal algorithm to select kernels and there-
fore build a compact model that maximizes the likelihood of the whole training set.

Consider a set ZK = {X1, X2, . . . , XK} of K kernels extracted from the training
set with mean and uncertainties estimates {Xi = (ΘiΣi)}K

i=1. The log likelihood of
the entire training set according to this model is:

CK =
N

i=1

log
1
K

(Θj ,σj)∈ZK

K(Θj , Σi,Θi, Σi)

A new kernel XK+1 is extracted from the training set as the one maximizing the quan-
tity CK+1 associated with ZK+1 = ZK

⋃
XK+1. The same kernel may be chosen

several times in order to preserve a increasing sequence CK . Consequently the selected
kernels Xi in ZK are also associated with a weight factor wi. Once such a selection has
been completed, the hybrid estimator is evaluated over ZK :

f̂H(Θ, Σ) =
1
N

∑
(Θi,σi,wi)∈ZK

wiK(Θ, Σ,Θi, Σi) (3)

3 Shape Based Segmentation Applied to the Corpus Callosum

Let us consider an image I where the corpus callosum structure is present and is to be
recovered. Recall that we now have a model of the corpus callosum: a shape that can be
transformed using an affine transformation and a FFD, and a measure of how well the
deformed shape belongs to the family of trained shapes.

Let φM be the distance transform of the reference model. Segmentation consists of
globally and locally deforming φM towards delineating the corpus callosum in I. Let
A be an affine transformation of the model and L(Θ) its local deformation using FFD
as previously introduced.

For now, we assume that the visual properties of the corpus callosum πcor() as well
as the ones of the local surrounding area πbck() are known. Then segmentation of the
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corpus callosum is equivalent to the minimization of the following energy with respect
to the parameters Θ and A:

Eimage(A, Θ) = −
RM

log [πcor (I (A(L(Θ;x)))] dx

−
Ω−RM

log [πbkg (I (A(L(Θ;x)))] dx

where RM denotes the inside of CM. However, the direct calculation of variations in-
volves image gradient and often converges to erroneous solutions due to the discretiza-
tion of the model domain. In that case, we change the integration domain to the image
by implicitly introducing the inverse transformation (see Appendix). A bimodal par-
tition in the image space is now to be recovered. The definition of this domain Rcor
depends upon the parameters of the transformation [A,Θ] as :

Rcor = A(L(Θ,RM)) and y = A(L(Θ,x))

The actual image term of the energy to be minimized then becomes:

Eimage(A, Θ) = −
Rcor

log [πcor (I (y))] dy

−
Ω−Rcor

log [πbkg (I (y))] dy
(4)

where statistical independence is considered at the pixel as well as hypotheses level. In
practice the distributions of the corpus callosum as well as the ones of the surrounding
region [πcor, πbkg] can be recovered in an incremental fashion using the Mumford-Shah
principle [13]. In the present case, each distribution is estimated by fitting a mixture of
Gaussians to the image histogram using an Expectation-Maximization algorithm (Fig.
2).

The shape based energy term, making use of the non parametric framework intro-
duced earlier is also locally influenced by a covariance matrix of uncertainty calculated
on the transformed model. This covariance matrix is computed in a fashion similar to
(2) with the difference that it may only account for the linear structure of the trans-
formed model and therefore allow variations of Θ that creates tangential displacements
of the contour:

Σ−1
Θ =

1
β

∮
CM

X (x)T∇φ̃M(x′)∇φ̃M(x′)TX (x)dx

where φ̃M is the transformation of φM under the deformation A(L(Θ)). Direct com-
putation leads to:

∇φ̃M(x′) = com
[

d

dx
(L(Θ,x))

]
.∇φM(x)

where ‘com’ denotes the matrix of cofactors. Then we introduce the shape based energy
term using the same notations as in (3) as:

Eshape(Θ, ΣΘ) = −log(f̂H(Θ, Σ))
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(a) (b) (c)

Fig. 3. Segmentation with uncertainties estimates of the corpus callosum; (a) Automatic rough
positioning of the model, (b) segmentation through affine transformation of the model (c) seg-
mentation using the local deformation of the FFD grid and uncertainties estimates on the regis-
tration/segmentation process (this figure should be seen in color)

The global energy is minimized with respect to the parameters ofA and Θ through the
computation of variations on E = Eimage + Eshape and implemented using a standard
gradient descent.

4 Experimental Results

We have applied our method to the segmentation of the corpus callosum in MR mid-
sagittal brain slices.

The first step was to build a model of the corpus callosum. Minimization of the reg-
istration energy is performed using gradient descent. In parallel, we successively refine
the size of the band α around the contour (from .3 to .05 times the size of the shape),
while we increase the complexity of the diffeomorphism (from an affine transformation
to an FFD with a regular [7× 12] lattice).

Fig. 1 shows examples of FFD deformations along with uncertainty ellipses. These
ellipses are the representation of the 2D conic obtained when projecting the covariance
matrix ΣΘ (of size 168 × 168) on the control points. It therefore does not allow us to
represent the correlations between control points.

The segmentation process is initialized by positioning the initial contour according
to the method proposed in [10]. Energy minimization is performed through gradient de-
scent, while the PDF πcor and πbkg are estimated by mixtures of Gaussians. Fig. 2 shows
the histogram of a typical image of the corpus callosum. The figure illustrates how well
mixtures of two Gaussian distributions can represent the individual histograms for the
corpus callosum and the background, respectively. Segmentation results are presented
in (Fig. 3 and Fig. 4) along with the associated uncertainties. In Fig. 3, we demonstrate
the individual steps of the segmentation process: the left most image shows the auto-
matic initialization of the contour, the middle image shows the contour after the affine
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Fig. 4. Additional segmentation results with uncertainty measures

transformation has been recovered, and the right image shows the local deformations.
Fig. 4 shows additional results and illustrates that our method can handle a wide variety
of shapes for the corpus callosum as well as large variations in image contrast. It can
be seen that the results in the bottom left image is not perfect. In general, failures may
be due to the fact that the shape constraint is not strong enough and the contrast in the
image dominates the deformation. Also, it might be that the shape of this particular
corpus callosum cannot be captured with the current PDF because it has been reduced
to only 10 kernels.

5 Conclusions

In this paper we have introduced a novel method to account for prior knowledge in the
segmentation process using non-parametric variable bandwidth kernels that are able to
account for errors in the registration and the segmentation process. We have shown that
the method can generate a very good model of the object of interest and produce very
good segmentation results.

However the method of kernel selection presented in Section 3 has shown some lim-
itation in practice. Therefore there is a strong need to build more efficient and compact
estimators of the shape variation PDF which account for these uncertainty measures. It
is also important to note that this method can be extended to higher dimensions. Build-
ing models in 3D and segmenting objects of large variability is the next step of our
research work.

The covariance matrices of uncertainty ΣΘ are very sparse. Indeed, while using
regular FFD, the influence of every grid point is local and therefore many cross corre-
lation coefficients are null. Different types of B-spline deformations using an irregular
positioning of control points (but dependent on the model) will be tried to address this
issue and therefore reduce the dimensionality of the problem.

Last, but not least, introduction of uncertainties directly measured in the image as
part of the segmentation process will provide local measures of confidence and could be
considered as a major breakthrough in the area of knowledge-based object extraction.



208 M. Taron, N. Paragios, and M.-P. Jolly

References

1. J. G. Bosch, S. C. Mitchell, B.P.F. Lelieveldt, F. Nikland, O. Kamp, M. Sonka, and J. H.
Reiber. Automatic segmentation of echocardiographic sequences by active appearance mo-
tion models. IEEE Trans. Medical Imaging, 21(11):1374–1383, 2002.

2. T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam. The use of active shape models for locating
structures in medical images. Image and Vision Computing, 12(6):255–266, 1994.

3. T. F. Cootes and C. J. Taylor. Statistical models of appearance for computer vision. Technical
Report, University of Manchester, 2004.

4. J. Duncan, A. Wang, A. Amini, R. Greene, L. Kier, J. Gore, J. Holahan, S. Shaywitz,
J. Fletcher, R. Bronen, and B. Shaywitz. A MRI-based study of the corpus callosum in
dyslexic and normal children. Neurology, 1996.

5. N. Duta and M. Sonka. Segmentation and interpretation of MR brain images: An improved
active shape model. IEEE Trans. Medical Imaging, 17(6):1049–1062, 1998.

6. M. Frumin, P. Golland, R. Kikinis, Y. Hirayasu, D. F. Salisbury, J. Hennen, C. C. Dickey,
M. Anderson, F. A. Jolesz, W. E. L. Grimson, R. W. McCarley, and M. R. Shenton. Shape
differences in the corpus callosum in first-episode schizophrenia and first-episode psychotic
affective disorder. American Journal of Psychiatry, 159:866–868, 2002.

7. X. Huang, N. Paragios, and D. Metaxas. Registration of Structures in Arbitrary Dimensions:
Implicit Representations, Mutual Information & Free-Form Deformations. Technical Report
DCS-TR-0520, Division of Computer & Information Science, Rutgers University, 2003.

8. K. Kanatani. Uncertainty modeling and model selection for geometric inference. IEEE
Trans. Pattern Anal. Mach. Intell., 26(10):1307–1319, 2004.

9. M. Leventon, E. Grimson, and O. Faugeras. Statistical Shape Influence in Geodesic Active
Controus. In IEEE Conference on Computer Vision and Pattern Recognition, pages I:316–
322, 2000.

10. A. Lundervold, N. Duta, T. Taxt, and A. Jain. Model-guided segmentation of corpus callosum
in MR images. In CVPR, pages 1231–1238, 1999.

11. T. McInerney, G. Hamarneh, M. Shenton, and D. Terzopoulos. Deformable organisms for
automatic medical image analysis. Medical Image Analysis, 6:251–266, 2002.

12. A. Mittal and N. Paragios. Motion-based background substraction using adaptive kernel
density estimation. In Computer Vision and Pattern Recognition, volume 2, pages 302–309,
2004.

13. D. Mumford and J. Shah. Boundary detection by minimizing functionals. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 22–26, 1985.

14. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed : Algorithms
based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 79:12–49,
1988.

15. N. Paragios, M. Rousson, and V. Ramesh. Matching Distance Functions: A Shape-to-Area
Variational Approach for Global-to-Local Registration. In European Conference on Com-
puter Vision, pages II:775–790, 2002.

16. D. Rueckert, L.I. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes. Nonrigid registration
using free-form deformations: Application to breast MR images. IEEE Transactions on
Medical Imaging, 18:712–721, 1999.

17. T. Sederberg and S. Parry. Free-form deformation of solid geometric models. Proceedings
SIGGRAPH ’86, 20:151–160, 1986.

18. C. Stewart, C.-L. Tsai, and B. Roysam. The dual bootstrap iterative closest point algorithm
with application to retinal image registration. IEEE Trans. Med. Img., 22:1379–1394, 2003.

19. M. Wand and M. Jones. Kernel Smoothing. Chapman & Hall, 1995.



Uncertainty-Driven Non-parametric Knowledge-Based Segmentation 209

Appendix

In this section we give some further exploration of the calculus of the derivative on
the energy term Eimage. We need first to introduce the Heaviside distribution which
we note H and the inverse diffeomorphism of A ◦ L(Θ) which we note G(Θ). This
diffeomorphism therefore verifies:

A(L(Θ,G(Θ,y))) = y (5)

For simpler notation purpose we also pose:

D(x,y) = −H(φM(x))log(πcor(I(y))) − (1 − H(φM(x)))log(πbkg(I(y)))

Then the image term of the energy (eq. 4) can be rewritten as:

Eimage(Θ) =
∫

Ω

D(G(Θ,y),y)dy

When differentiating Eq. (5) with respect to Θ and substituting the expression obtained
for dG/dΘ into the expression of dEimage(Θ)/dΘ, we get the following:

dEimage(Θ)
dΘ

=

−
Ω

∂D

∂xT
(G(Θ,y),y)

∂(A ◦ L)
∂xT

(G(Θ,y),Θ)
−1

∂(A ◦ L)
∂ΘT

(G(Θ,y),Θ)dy

Now changing the integration variable according to the diffeomorphismx = G(Θ,y)

dEimage(Θ)
dΘ

= −
Ω

∂D

∂xT
(x, A(L(Θ,x)))com

∂(A ◦ L)
∂xT

(x,Θ)
T

∂(A ◦ L)
∂ΘT

(x,Θ)dx

where ‘com’ denotes the matrix of cofactors. When calculating explicitly the partial
derivative of D with respect to its first variable, this integral further simplifies into a
curve integral along the reference model:

dEimage(Θ)
dΘ

=

−
CM

D̃(A(L(Θ,x))) com
∂(A ◦ L)

∂xT
(x,Θ) .∇φM(x)

T
∂(A ◦ L)

∂ΘT
(x,Θ)dx

with D̃ defined as:

D̃(y) = − log(πcor(I(y))) + log(πbkg(I(y)))

This expression of the derivative refers only to the contour in the model space. Therefore
there is no need to parse the entire image domain at every iteration of the gradient
descent used in our implementation. Instead, we only scan the model contour at every
iterations. Parsing of the images is only necessary when we reevaluate the parameters
of the gaussian mixtures for πcor and πbkg (every 20 iteration).
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Abstract. In recent years, researchers have proposed to introduce sta-
tistical shape knowledge into the level set method in order to cope with
insufficient low-level information. While these priors were shown to dras-
tically improve the segmentation of images or image sequences, so far
the focus has been on statistical shape priors that are time-invariant.
Yet, in the context of tracking deformable objects, it is clear that certain
silhouettes may become more or less likely over time. In this paper, we
tackle the challenge of learning dynamical statistical models for implicitly
represented shapes. We show how these can be integrated into a segmen-
tation process in a Bayesian framework for image sequence segmentation.
Experiments demonstrate that such shape priors with memory can dras-
tically improve the segmentation of image sequences.

1 Level Set Based Image Segmentation

In 1988, Osher and Sethian [16] introduced the level set method1 as a means to
implicitly propagate boundaries C(t) in the image plane Ω ⊂ R2 by evolving an
appropriate embedding function φ : Ω × [0, T ] → R, where:

C(t) = {x ∈ Ω | φ(x, t) = 0}. (1)

The ordinary differential equation propagating explicit contour points is thus
replaced by a partial differential equation modeling the evolution of a higher-
dimensional embedding function. The key advantages of this approach are well-
known. First, the implicit contour representation does not depend on a specific
parameterization and during the propagation no control point regridding mech-
anisms need to be introduced. Second, evolving the embedding function allows
topological changes such as splitting and merging of the embedded contour to
be elegantly modeled. In the context of shape modeling and statistical learning
of shapes, the latter property allows for the construction of shape dissimilar-
ity measures defined on the embedding functions which can handle shapes of
varying topology. Third, the implicit representation (1) naturally generalizes to
hypersurfaces in three or more dimensions. To impose a unique correspondence
between a contour and its embedding function one can constrain φ to be a signed
distance function, i.e. |∇φ| = 1 almost everywhere.
1 A precursor of the level set method was proposed by Dervieux and Thomasset [8].
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Starting in the early 90’s researchers proposed to apply the level set method
to image segmentation (cf. [12,3,10,17]). Level set implementations of the Mum-
ford-Shah functional [14] were independently proposed in [4,24].

In recent years, researchers have successfully introduced prior shape infor-
mation into level set based segmentation schemes [11,25,21,5,19,7,22,20]. Statis-
tically learned shape information was shown to cope for missing or misleading
information in the input images due to noise, clutter and occlusion. These shape
priors were developed to segment objects of familiar shape in a given image. Al-
though they can be applied to tracking objects in image sequences [6,13,7], they
are not well-suited for this task, because they neglect the temporal coherence of
silhouettes which characterizes the motion of many deforming shapes.

When tracking a three-dimensional deformable object over time, clearly not
all shapes are equally likely at a given time instance. Regularly sampled im-
ages of a walking person, for example, exhibit a typical pattern of consecutive
silhouettes. Similarly, the projections of a rigid 3D object rotating at constant
speed are generally not independent samples from a statistical shape distribu-
tion. Instead, the resulting set of silhouettes can be expected to contain strong
temporal correlations. In this paper, we will develop statistical shape models for
which the shape probability at a given time will depend on the shapes observed
at previous time steps. The integration of such dynamical shape models into the
segmentation process can be elegantly formulated within a Bayesian framework
for level set segmentation of image sequences as follows.

2 Level Set Based Tracking as Bayesian Inference

In this section, we will introduce a Bayesian formulation for the problem of
level set based image sequence segmentation. We will first treat the general
formulation in the space of embedding functions and subsequently for propose a
computationally more efficient formulation in a low-dimensional subspace.

2.1 General Formulation

In the following, we define as shape a set of closed 2D contours modulo a certain
transformation group the elements of which are denoted by Tθ with a parameter
vector θ. Depending on the application, these may be rigid-body transforma-
tions, similarity or affine transformations or larger transformation groups. The
shape is represented implicitly by an embedding function φ according to equation
(1). Thus objects of interest will be given by φ(Tθ x), where the transformation
Tθ acts on the grid, leading to corresponding transformations of the implicitly
represented contour. We purposely separate shape φ and transformation para-
meters θ since one may want to use different models to represent and learn their
respective temporal evolution.

Assume we are given consecutive images It : Ω → R from an image sequence,
where I1:t denotes the set of images {I1, I1, . . . , It} at different time instances.
Assume we have already segmented the images at previous times in terms of
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embedding functions φ̂1:t−1 and transformation parameters θ̂1:t−1. The problem
of segmenting the current frame It can then be addressed in the framework of
Bayesian inference by maximizing the conditional probability

P(φt, θt | I1:t, φ̂1:t−1, θ̂1:t−1) =
P(I1:t |φt, θt, φ̂1:t−1, θ̂1:t−1) P(φt, θt | φ̂1:t−1, θ̂1:t−1)

P(I1:t | φ̂1:t−1, θ̂1:t−1)
,

with respect to the embedding function φt and the transformation parameters
θt.2 The denominator in the above expression does not depend on the estimated
quantities and can therefore be neglected in the maximization.

In order to further reduce the complexity of the estimation problem, we will
make the following assumptions:

– The images I1:t are mutually independent and their probability only depends
on the current shape and transformation. Therefore, the first term in the
numerator reduces to:

P(I1:t |φt, θt, φ1:t−1, θ1:t−1) =
t∏

i=1

P(Ii |φi, θi) = P(It |φt, θt) · const. (2)

– We assume that the intensities of the shape of interest and of the back-
ground are independent samples from two Gaussian distributions Kμ,σ(I) =

1√
2πσ

exp
(
− (I−μ)2

2σ2

)
with unknown means μ1, μ2 and variances σ1, σ2. As a

consequence, the data term can be written as:

P(It |φt, θt) =
∏
x

φ(Tθt x)≥0

Kμ1,σ1

(
It(x)

) ∏
x

φ(Tθt x)<0

Kμ2,σ2

(
It(x)

)

∝ exp

(
−

∫
Ω

(
(It − μ1)2

2σ2
1

+log σ1

)
Hφt(Tθtx)

+
(

(It − μ2)2

2σ2
2

+logσ2

)(
1−Hφt(Tθtx)

)
dx

)
,

(3)

where we have introduced the Heaviside step function Hφ ≡ H(φ) to denote
the areas where φ is positive (Hφ = 1) or negative (Hφ = 0). Related
intensity models for segmentation have been proposed among others in [26,4].
The intensity model parameters μi and σi are estimated jointly with the
shape φt and the transformation θt. Their optimal values are simply given
by the means and variances of the intensity It inside and outside the current
shape. To keep the notation simple, we do not display them as part of the
dynamic variables.

2 Since the modeling of probability distributions on infinite-dimensional spaces is in
general an open problem including issues of defining appropriate measures and of
integrability, the functions φ in this paper may be thought of as finite-dimensional
approximations obtained by sampling the embedding functions on a regular grid.
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– The prior probability of the current shape and transformation are mutually
independent and only depend on their previous estimates. The second term
in the numerator therefore simplifies as follows:

P(φt, θt |φ1:t−1, θ1:t−1) = P(φt |φ1:t−1) P(θt | θ1:t−1)

By this assumption, we therefore neglect couplings between shape and trans-
formation. Since the focus of the present paper is on modeling temporally
correlated shape deformations, we will simply assume a uniform prior on
the transformation parameters, i.e. P(θt | θ1:t−1) = const. Rathi et al. [18] re-
cently proposed a temporal model of these transformation parameters while
not imposing any specific model on the shape. In this sense, our work is com-
plimentary to theirs. In the following, we will develop appropriate models
for the conditional probability P(φt |φ1:t−1).

2.2 A Finite-Dimensional Formulation

When estimating the conditional probability P(φt |φ1:t−1) from sample data, one
needs to revert to finite-dimensional approximations of the embedding function.
It is well-known that statistical models can be estimated more reliably if the
dimensionality of the data is low. We will therefore recast the Bayesian infer-
ence in a low-dimensional formulation given within the subspace spanned by the
largest principal eigenmodes of a set of sample shapes.

Let {φ1, . . . , φN} be a temporal sequence of training shapes.3 Let φ0 denote
the mean shape and ψ1, . . . , ψn the n largest eigenmodes with n << N . We will
then approximate each training shape as:

φi(x) = φ0(x) +
n∑

j=1

αij ψj(x), (4)

where
αij = 〈φi − φ0, ψj〉 ≡

∫
(φi − φ0)ψj dx. (5)

Such PCA based representations of level set functions have been successfully
applied for the construction of statistical shape priors in [11,24,22]. In the fol-
lowing, we will denote the vector of the first n eigenmodes as ψ = (ψ1, . . . , ψn).

3 We assume that all training shapes φi are signed distance functions, yet an arbitrary
linear combination of eigenmodes will in general not generate a signed distance
function. While the proposed statistical shape models favor shapes which are close
to the training shapes (and therefore close to the set of signed distance functions),
not all shapes sampled in the considered subspace will correspond to signed distance
functions. In addition, it is quite possible that linear combinations result in empty
shapes, i.e. the zero level set of a linear combination may be the empty set.

While level set based shape representations via harmonic embedding [9] do form
a linear space, such representations are limited in practice, because not every shape
can be represented by an appropriate harmonic function.
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Fig. 1. Low-dimensional approximation of a set of training silhouettes. The silhou-
ettes (above) are approximated by the first 6 principal components of their embedding
functions (below) – see equation (4).

Each sample shape φi is therefore approximated by the n-dimensional shape
vector αi = (αi1, . . . , αin). Similarly, an arbitrary shape φ can be approximated
by a shape vector of the form

αφ = 〈φ− φ0,ψ〉. (6)

Figure 1 shows a set of silhouettes from a sequence of a walking person and their
approximation by the first 6 eigenmodes. While this approximation is certainly
a rough approximation lacking some of the details of the shape, we found it
sufficiently accurate for our purpose.

The goal of image sequence segmentation within this subspace can then be
stated as follows: Given consecutive images It : Ω → R from an image sequence,
and given the segmentations α̂1:t−1 and transformations θ̂1:t−1 obtained on the
previous images I1:t−1, we need to maximize the conditional probability

P
(
αt, θt|I1:t, {α̂, θ̂}1:t−1

)
∝ P

(
I1:t|αt, θt, {α̂, θ̂}1:t−1

)
P
(
αt, θt|{α̂, θ̂}1:t−1

)
, (7)

with respect to the shape parameters αt and the transformation parameters θt.
One can introduce the same approximations as in the previous section. In all
expressions the variables φi are simply replaced by their shape vectors αi. Due
to space limitations, we will not carry this out explicitly. The key contribution
of this work, is to model the probability

P(αt | α̂1:t−1), (8)

which constitutes the probability for observing a particular shape conditioned
on the previously observed shapes.

Abundant theory has been developed to model temporally correlated time
series data. Applications of dynamical systems to model deformable shapes were
proposed among others in [2]. In our context, we intend to learn dynamical
models for the implicitly represented shapes.
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1st mode 2nd mode 3rd mode 4th mode

Fig. 2. Autocorrelation functions. To validate the accuracy of the fitted autoregressive
model, we plotted the autocorrelation functions of the residuals associated with the
first four shape modes. Except for the first mode, more than 95% of autocorrelations
(for lag > 0) lie within the confidence limits of an IID process.

Original evolution of three shape components Synthesized evolution

Fig. 3. Model comparison. The original shape sequence (top) and the sequence syn-
thesized by a statistically learned second order Markov chain (bottom) exhibit similar
oscillatory behaviour and amplitude modulation. The plots show the temporal evolu-
tion of the first, second and sixth shape eigenmode.

3 Dynamical Statistical Shape Models

In the following, we propose to learn the temporal dynamics of a deforming
shape by approximating the shape vectors αt ≡ αφt of a sequence of silhouettes
by a Markov chain (cf. [2,15]) of order k, i.e.:

αt = μ + A1αt−1 + A2αt−2 + . . . + Akαt−k + η. (9)

The state at time t is therefore given by a linear combination of previous states,
modeled by a mean μ ∈ Rn and transition matrices A1, . . . , Ak ∈ Rn×n, and
zero-mean Gaussian noise η ∈ Rn with covariance Σ ∈ Rn×n superimposed. The
probability of a shape conditioned on the shapes observed in previous time steps
is therefore given by the corresponding autoregressive model of order k:

P(αt |α1:t−1) ∝ exp
(
−1

2
v� Σ−1 v

)
, (10)

where
v = αt − μ−A1αt−1 −A2αt−2 . . .−Akαt−k (11)
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Fig. 4. Synthetically generated walking sequence. Sample silhouettes generated by a
statistically learned second order Markov model on the embedding functions – see equa-
tion (9). While the Markov model captures much of the typical oscillatory behaviour of
a walking person, not all generated samples correspond to permissible shapes – cf. the
last two silhouettes on the bottom right. Yet, as we shall see in Section 5, the model is
sufficiently accurate to constrain the segmentation process in a meaningful way.

Various methods have been proposed in the literature to estimate the model
parameters given by the mean μ ∈ Rn and the matrices A1, . . . , Ak, Σ ∈ Rn×n.
We applied a stepwise least squares algorithm proposed in [15]. Different tests
have been devised to quantify the accuracy of the model fit. Two established
criteria for model accuracy are Akaike’s Final Prediction Error [1] and Schwarz’s
Bayesian Criterion [23]. Using dynamical models up to an order of 8, we found
that according to Schwarz’s Bayesian Criterion, our training sequences were best
approximated by an autoregressive model of second order.

From a sequence of 151 consecutive silhouettes, we estimated the parameters
of a second order autoregressive model. We subsequently validated this model
by plotting the autocorrelation functions of the residuals associated with each
of the modeled eigenmodes – see Figure 2. These show that the residuals are
essentially uncorrelated.

In addition, the estimated model parameters allow us to synthesize a walking
sequence according to (9).4 Figure 3 shows the temporal evolution of the first,
second and sixth eigenmode in the input sequence (left) and in the synthesized
sequence. Clearly, the second order model captures some of the key elements of
the oscillatory behaviour.

While the synthesized sequence does capture the characteristic motion of a
walking person, Figure 4 shows that the individual synthesized silhouettes do
not in all instances mimic valid shapes. We believe that such limitations can
be expected from a model which strongly compresses the represented input se-
quence: Instead of 151 shapes defined on a 256 × 256 grid, the model merely
retains a mean shape φ0, 6 eigenmodes ψ and the autoregressive model parame-
ters given by a 6-dimensional mean and three 6 × 6 matrices. This amounts to
458851 instead of 9895936 parameters, corresponding to a compression to 4.6%
of the original size.

4 In order to remove the dependency on the initial conditions, the first several hundred
samples were discarded from the synthesized sequence.
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4 Dynamical Shape Priors in Variational Segmentation

Maximizing the conditional probability (7) under the assumptions introduced
in Section 2 can be done by minimizing the negative logarithm of (7). Up to a
constant, the latter is given by:

E(αt, θt) = Edata(αt, θt) + ν Edynamics(αt). (12)

According to equation (3), the data term is given by:

Edata =
∫
Ω

(
(It−μ1)2

2σ2
1

+log σ1

)
Hφαt,θt +

(
(It−μ2)2

2σ2
2

+log σ2

)(
1−Hφαt,θt

)
dx,

where, for notational simplicity, we have introduced the expression φαt,θt ≡
φ0(Tθtx) + α�

t ψ(Tθtx) to denote the embedding function of a shape generated
with deformation parameters αt and transformed with parameters θt.

Using the autoregressive model (10), the dynamical shape energy is given by:

Edynamics(αt) =
1
2

v� Σ−1 v (13)

with v defined in (11).
Tracking an object of interest over a sequence of images I1:t with a statisti-

cally learnt dynamical shape prior can be done by minimizing energy (12). In this
work, we pursue a gradient descent strategy leading to the following differential
equations to estimate the shape vector αt and θt:

dαt(τ)
∂τ

= −∂Edata(αt, θt)
∂αt

− ν
dEdynamics(αt)

dαt
(14)

where τ denotes the artificial evolution time, as opposed to the physical time t.
The first term is given by:

∂Edata

∂αt
=

〈
ψ, δ(φαt

)
(

(It−μ1)2

2σ2
1

− (It−μ2)2

2σ2
2

+log
σ1

σ2

)〉
,

and the second one is given by:
dEdynamics

dαt
= Σ−1 v, (15)

with v given in (11). These two terms affect the shape evolution in the follow-
ing manner: The first term draws the shape to separate the image intensities
according to the two Gaussian intensity models. Since the effect of variations in
the shape vector αt are given by the eigenmodes ψ, the data term is a projec-
tion onto these eigenmodes. The second term induces a relaxation of the shape
vector αt toward the most likely shape, given the shapes obtained on previous
time frames.

Minimization with respect to the transformation parameters θt is obtained
by evolving the respective gradient descent equation given by:

dθt(τ)
∂τ

= −∂Edata

∂θt
= −

〈
∇ψ

d(Tθtx)
dθt

, δ(φαt
)
(

(It−μ1)2

2σ2
1

− (It−μ2)2

2σ2
2

+log
σ1

σ2

)〉
.
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25% noise 50% noise 90% noise

Fig. 5. Images from a sequence with increasing amounts of noise5

Fig. 6. Sample segmentations with a static shape prior on a walking sequence with
25% noise. Constraining the level set evolution to a low-dimensional subspace allows
to cope with a certain amount of noise.

5 Segmentation and Tracking Results

In the following, we will apply the dynamical statistical shape prior introduced
above for the purpose of level set based tracking.

To construct the shape prior, we hand-segmented a sequence of a walking
person, centered and binarized each shape. Subsequently, we determined the set
of signed distance functions {φi}i=1..N associated with each shape and computed
the dominant 6 eigenmodes. Projecting each training shape on these eigenmodes,
we obtained a sequence of shape vectors {αi ∈ R6}i=1..N . We fitted a second
order multivariate autoregressive model to this sequence by computing the mean
vector μ, the transition matrices A1, A2 and the noise covariance Σ shown in
equation (10). Subsequently, we compared segmentations of noisy sequences ob-
tained by segmentation in the 6-dimensional subspace without and with the
dynamical statistical prior.

Figure 5 shows a sample input frame from a sequence with 25%, 50%, and
90% noise.5 Figure 6 shows a set of segmentations obtained without dynamical
shape prior on a sequence with 25% noise. While the segmentation without
dynamical prior is successful with little noise, Figure 7 shows that it eventually
breaks down when the noise level is increased.

Figure 8 shows segmentations of the same sequence as in 7 obtained with
a dynamical statistical shape prior derived from a second order autoregressive
model. Figure 9 shows that the dynamical statistical shape prior provides for
good segmentations, even with 90% noise. Clearly, exploiting the temporal sta-

5 90% noise means that 90% of all pixels were replaced by a random intensity sampled
from a uniform distribution.
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Fig. 7. Sample segmentations with a static shape prior on a walking sequence with
50% noise. Using merely a static shape prior, the segmentation scheme cannot cope
with larger amounts of noise.

Fig. 8. Segmentation using a dynamical statistical shape prior based on a second order
autoregressive model. In contrast to the segmentation in Figure 7, the prior imposes
statistically learned information about the temporal dynamics of the shape evolution
to cope with misleading low-level information.

Fig. 9. Tracking with dynamical statistical shape prior to cope with larger amounts
of noise. The input images were corrupted with 90% of noise. Yet, the statistically
learned dynamical shape model allows to disambiguate the low-level information. These
experiments confirm that our tracking schemes can indeed compete with the capacities
of human observers.

tistics of dynamical shapes allows to make the segmentation process very robust
to missing and misleading information.

6 Conclusion

In this work, we introduced dynamical statistical shape models for implicitly
represented shapes. In contrast to existing statistical shape models for implicit
shapes, these models capture the temporal correlations which characterize de-
forming shapes such as the consecutive silhouettes of a walking person or the 2D
projections of a rotating 3D object. Therefore they account for the fact that the
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probability of observing a particular shape at a given time instance may depend
on the shapes observed at previous time instances.

For the construction of statistical shape models, we extended the concepts of
Markov chains and autoregressive models to the domain of implicitly represented
shapes. The resulting dynamical implicit shape models therefore support shapes
of varying topology and are easily extended to higher-dimensional shapes (i.e.
surfaces).

With the estimated dynamical models one can synthesize shape sequences of
arbitrary length. In the context of a sequence of a walking person, we validated
the accuracy of the estimated dynamical models, comparing the dynamical shape
evolution of the input sequence to that of the synthesized sequence for various
shape eigenmodes. In addition, we validated that the residuals are statistically
uncorrelated. Although the synthesized shapes do not in all instances correspond
to valid shapes, one can nevertheless use the dynamical model to constrain a
segmentation process in a meaningful way.

To this end, we developed a Bayesian formulation for level set based image
sequence segmentation, which allows to impose the statistically learnt dynamical
models as shape priors in the segmentation process. In contrast to most existing
approaches to tracking, autoregressive models are integrated as statistical priors
in a variational approach which can be minimized by local gradient descent
(rather than stochastic optimization methods).

Experimental results confirm that the resulting shape priors make it possi-
ble to reliably track familiar deformable objects despite large amounts of noise.
Future work is focused on further quantitative performance analysis, on the de-
velopment of statistical models which capture the joint dynamics of deformation
and transformation modes, and on the optimization with stochastic methods.
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Abstract. We present a novel variational model to find shape-based
correspondences between two sets of level curves. While the usual corre-
spondence techniques work with parametrized curves, we use a level-set
formulation that enables us to handle curves with arbitrary topology.
Given the functions Φ1 : (Ω1 ⊆ IR2) → IR and Φ2 : (Ω2 ⊆ IR2) → IR
whose 0-level curves we want to match, we search for a diffeomorphism
that minimizes the rate of change of the difference in tangential orien-
tation of the zero-level sets. To make the formulation symmetric and to
simplify computations, we map the domains of the level-set functions Φi

to a common domain Ω by initial diffeomorphisms that are chosen arbi-
trarily. We then search for diffeomorphisms from Ω to itself, generating
them by flows of certain vector fields on Ω. The resulting correspon-
dences are scale- and rotation-invariant with respect to the curves. We
show how this model can be used as a basis to compare curves of different
topology. The model was tested on synthetic and MRI cardiac data,with
good results.

1 Introduction

Detecting non-rigid correspondences between curves is an important problem
with many applications in computer vision and medical imaging, including mo-
tion analysis[19,5,15,14], shape analysis[16,6], feature-based registration[17] and
knowledge-based segmentation[24,4]. Given a pair of curves C1 and C2, the prob-
lem is formulated as finding a meaningful transformation  : C1 → C2 that mini-
mizes a shape-dissimilarity measure between the curves. Methods like [20,26,25],
have addressed the correspondence problem successfully for parametrized curves.

In this paper, we propose a framework to solve the correspondence problem
for implicitly represented curves, to handle curves of arbitrary topology. We
assume that the curves C1 and C2 are 0-level sets of higher dimensional functions.

Recently, some techniques have been proposed to match implicitly-defined
curves [23,12]. In general, such methods find a suitable transformation % :
IR2 → IR2 that minimizes the Euclidean distance between the curves. These
spatial transformations % can be modeled using splines [2,3] or dense deforma-
tions [23]. However, the cost of accurately modeling local variations between

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 222–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the curves is high, since transformations of the embedding domain have to
drive the curve deformations. Moreover, this approach does not guarantee the
point-correspondence criterion %(C1) = C2, which is essential in many applica-
tions, e.g. motion-tracking. These methods are more suited for curve-matching,
whereas our work is applicable both to curve-matching and to motion-tracking
of implicitly represented curves.

One of the novelties of our work is that we solve the correspondence problem
for implicitly represented curves by directly computing transformations between
the curves. To be more precise, we look for a diffeomorphism  : C1 → C2. A
worthy mention here is the work of Memoli et al.[21] to find maps between two
general curved manifolds, represented implicitly. Recently there has been inter-
ests in modeling diffeomorphic transformations for landmark matching[13,9,18]
and image matching[7] using flows of time-dependent vector fields. This approach
has been found to be suitable for generating large non-rigid deformations of the
plane. We use a similar idea to construct our search space of diffeomorphisms
between the curves. To simplify computations, we map our curves initially to
a topologically equivalent object, say C(e.g. in the 1-curve case, C is chosen
to be a circle.). We then look for diffeomorphisms of C, that are generated by
flows of tangential vector fields of C. A similar approach is taken in [9,1], but
for matching landmarks on surfaces.

The similarity measure chosen for a shape-matching problem usually depends
on the type of variability expected in that class of shapes. Euclidean distance
[23,12], curvatures[25,15] and curve normal[14] are some of the criteria that can
be used. For a survey on similarity measures, we refer the reader to [27]. Our
method is geared towards curves that differ from each other primarily by local
stretching and piecewise-rigid motions. For this type of variability, we propose
to use curve normals as the shape-matching criterion. It is to be noted that use
of normals, does allow non-rigid variability between the curves(e.g. all convex
curves have the same unit normal field).

Our model is novel in three aspects. First, as mentioned above, we directly
compute diffeomorphisms between the curves. Second, our approach hybridizes
level-set and parametric techniques, using the former to compute normal vectors
and to provide a convenient cartesian domain in which to perform calculations,
irrespective of the topology of the curves. Third, the correspondences our method
produces are symmetric under interchange of C1 and C2, when the curves have
the same topology. Further, the resulting correspondences are scale-/rotation-
invariant with respect to the curves.

2 Related Work

Our work can be seen as a modification and extension of Tagare’s shape-matching
technique [25] to implicitly-defined curves. Tagare uses a specific class of corre-
spondences called bimorphisms to match curves. We briefly review his work here.

Let C1 and C2 be two curves with lengths LC1 and LC2 , parametrized by arc-
length. A parametrized bimorphism is a map μ : [0, 1] → [0, 1]× [0, 1], given by
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μ(t) = [ s1(t)
LC1

, s2(t)
LC2

],where s1(t) : [0, 1] → [0,LC1 ] and s2(t) : [0, 1] → [0,LC2 ] are

surjective functions, satisfying the conditions s′1(t) ≥ 0, s′2(t) ≥ 0 and |μ̇(t)| > 0.
The functions s1(t) and s2(t) thus defined intrinsically model continuous, non-
rigid correspondences between the curves.

Tagare defines a shape-based correspondence between C1 and C2 to be a

bimorphism μ(t) = [ s1(t)
LC1

, s2(t)
LC2

] that minimizes the following energy:

JC1,C2 [s1, s2] =
∫

[μ]
[
dΘ1

dsμ
(s1(t))−

dΘ2

dsμ
(s2(t))]2dsμ (1)

where Θi(s) is the angular orientation of the normal to the curve Ci at arc length

s and dsμ =
√

s′
1(t)2

L2
C1

+ s′
2(t)2

L2
C2

dt is the arc-length element of [μ] := Image(μ).

The objective function J can be seen to be symmetric and scale/rotation-
invariant with respect to C1 and C2.

Since what we want to minimize in (1) is ( d
dsμ

[Θ1(s1(t)) − Θ2(s2(t))])2,we
can use one derivative fewer in our formulation by seeking a constant θ such
that Θ1(s1(t))−Θ2(s2(t)) ≈ θ. To use a similar idea to match implicitly-defined
curves, it is convenient to compare the curve-normal functions n1(s1(t)) and
n2(s2(t)) instead. This motivates us to reformulate (1) as:

JC1,C2 [s1, s2, θ] =
∫

[μ]
|n1(s1(t))− Rθn2(s2(t))|2dsμ (2)

where Rθ is the counter-clockwise rotation by the angle θ.

3 Bimorphism for Level Curves

Let Ω,Ω1 and Ω2 be bounded regions in IR2. Given Lipschitz functions Φ1 :
Ω1 → IR and Φ2 : Ω2 → IR with 0-level curves C1 and C2 , we extend the
problem of computing shape-based bimorphisms for these embedded curves. We
require Φi to have non-vanishing gradients on their 0-level sets. For E.g. Φi can
be chosen as the signed distance function of Ci. For the sake of simplicity, we
start with the case when C1 and C2 have the topology of a circle. Let C be a unit
circle in IR2 centered at the origin, and Φ : Ω → IR its signed distance function.

We define a bimorphism between the embedded curves C1 and C2 to be a
map υ : C → (C1 × C2) ⊆ IR4 given by υ = [ f̂1

LC1
, f̂2

LC2
], where f̂i : C → Ci is a

diffeomorphism and LCi =
∫

Ωi
δ(Φi)|∇Φi|dx is the length of Ci. Here δ(Φ(x)) is

the Dirac delta function. In our implementation, we use a smooth approximation
for the delta function, denoted δε(t). Along the same lines of (2), in this paper
we define a shape-based correspondence between C1 and C2 to be a bimorphism
that minimizes the energy:

ÊC1,C2 [f̂1, f̂2, θ] =
∫

[υ]
|v1(f̂1)− Rθv2(f̂2)|2dsυ (3)
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where vi = �Φi

|�Φi| , is the unit normal vector field to the level sets of Φi and dsυ

is the length element of υ.
Now, we shift our computations over to the domain Ω, by writing (3) in a level

set formulation. Let Nε(C) = {x ∈ Ω|Φ(x) < ε}, Nεi(Ci) = {x ∈ Ωi|Φi(x) <

εi} be neighborhoods of C and Ci respectively, such that we can extend the
diffeomorphism fi : C → Ci to a diffeomorphism f̄i : Nε(C) → Nεi(Ci), i.e.

f̄i|C = f̂i. Consider the map F : Nε(C) → IR4 defined as F = [ f̄1
LC1

, f̄2
LC2

]. The

graph of the map F is a surface in IR4, with surface-element |Fx ∧ Fy|dx =√
|Fx|2|Fy |2 − |Fx · Fy|2dx. Since F |C = υ, the length of the curve υ embedded

in IR4 can be computed by:∫
υ

dsυ =
∫

Ω

δ(Φ)|∇Φ||Fx ∧ Fy|dx =
∫

Ω

δ(Φ)|Fx ∧ Fy|dx,

since |∇Φ| = 1. Hence, we can rewrite (3) in the form

E(f̄1, f̄2, θ) =
∫

Ω

δ(Φ(x))|v1(f1(x))− Rθv2(f2(x))|2 |Fx ∧ Fy|dx (4)

4 Decomposition of the Bimorphism

In the energy (4), the search-space is over diffeomorphisms f̄1, f̄2 : Nε(C) →
IR2,with f̄i(C) = Ci. Let f0,i : Nε(C) → Ω1(i=1,2), be diffeomorphisms arbi-
trarily chosen such that f0,i(C) = Ci. Then given f̄i there exists a unique diffeo-
morphism fi : Nε(C) → Nε(C) with fi(C) = C, such that f̄i = f0,i ◦ fi(Fig.1).

Thus we can replace our search-space by the space of diffeomorphisms f1, f2 :
Nε(C) → Nε(C) such that fi(C) = C. Now the energy functional (4) is written
as:

Ẽ(f1, f2, θ) =
∫

Ω

δ(Φ(x))|v1(f0,1 ◦ f1)− Rθv2(f0,2 ◦ f2)|2 |Fx ∧ Fy|dx (5)

where F = [ f0,1◦f1
LC1

,
f0,2◦f2

LC2
].

We can observe that the set of minimizers to energy functional (5), if nonempty,
is invariant with respect to

1. Initial maps f0,i,
2. Rotation and scaling transformations on the level curves C1 and C2.

We restrict our search for fi to flows of vector fields, of the form Xi = ai(x)T ,
where T = ∇Φ⊥ is the tangential vector field to the level-curves of Φ obtained by
counterclockwise rotation of ∇Φ, and where ai : Ω → IR is a Lipschitz function
with compact support in Nε(C).
For a fixed x, Consider the flow χi(x, t) of Xi given by the following differential
equation:

χ̇i(x, t) = Xi(χi(x, t)), χi(x, 0) = x.
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Then for a fixed τ > 0, χi(x, τ) : Nε(C) → Nε(C) is a diffeomorphism and
χi(C, τ) = C. Naturally, we let fi(x) = fi(x; ai) = χi(x, τ).

Hence our search for diffeomorphisms fi : Nε(C) → Nε(C) satisfying fi(C) =
C, reduces to looking for Lipschitz functions ai with compact support in Nε(C).
The energy functional (5) now becomes:
E0(a1, a2, θ)=∫

Ω

δ(Φ(x))|v1(f0,1 ◦ f1(x; a1))− Rθv2(f0,2 ◦ f2(x; a2))|2 |Fx ∧ Fy|dx (6)

5 Approximation

We approximate our minimization problem (6) by restricting our search space
for a1 and a2 to be finite-dimensional. Let {xj}N

j=1 be a finite set of regu-
larly spaced points on C. We look at N basis-functions {ψj}N

j=1, with ψj cen-

tered at the control-point xj , defined by ψj(x) = ηε(r)(1 − cos−1(ςj)
π ) ,where

r = |x| − 1, ςj = x·xj

|x| , ηε ∈ C∞
c (IR) is the standard mollifier of width ε.

Let Ψ(x) = [ψ1(x), ψ2(x), ..., ψN (x)]. To solve our problem , we find constants
c1 = [c11, c12, ..., c1N ] and c2 = [c21, c22, ..., c2N ], and such that

ai =
∑N

j=1 cijψi = ci · Ψ , and θ minimize (6) over IRN × IRN × IR/2πZZ. Hence
ai ∈ C0

c (Nε(C)), as needed. Note that we can vary the smoothness of ai by
appropriately choosing the basis functions ψi. To summarize, we minimize:
E(c1, c2, θ) =∫

Ω

δ(Φ(x))|v1(f0,1 ◦ f1(x; c1))− Rθv2(f0,2 ◦ f2(x; c2))|2 |Fx ∧ Fy|dx (7)

over IRN × IRN × IR/2πZZ.
Here F = [ f0,1◦f1

LC1
,

f0,2◦f2
LC2

], fi(x) = χi(x, τ) where χi satisfy the flow equations:

χ̇i(x, t) = (ci ·Ψ(χi(x, t)))T (χi(x, t)), χi(x, 0) = x,

For any map T , we denote its Jacobian matrix as DT. Denote fi,cik
= ∂fi

∂cik
. Let

V̂ = v1(f0,1 ◦ f1(x; c1))−Rθv2(f0,2 ◦ f2(x; c2)). The Euler-Lagrange equations
for this minimization problem are:

∂E
∂c1k

=
Ω

δ(Φ)V̂ .Dv1.Df0,1.f1,c1k )|Fx ∧ Fy| + |V̂ |2 ∂

∂c1k
(|Fx ∧ Fy|)dx = 0, (8)

∂E

∂c2k
=

Ω

δ(Φ)(−V̂ .RθDv2.Df0,2.f2,c2k |Fx ∧ Fy| + |V̂ |2 ∂

∂c2k
(|Fx ∧ Fy |)dx

= 0, (9)
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Fig. 1. The shaded grey bands are Nε(C), Nεi(Ci). f0,i are initial diffeomorphisms. fi

are the minimization variables.

∂E

∂θ
=

Ω

δ(Φ)(−V̂ .R′
θv2)|Fx ∧ Fy| = 0. (10)

In (8) and (9),

∂

∂cik
(|Fx ∧ Fy|) =

1
|Fx ∧ Fy |

[|Fy|2Fx · Fxcik
+ |Fx|2Fy · Fycik

− (Fx · Fy)

(Fx · Fycik
+ Fy · Fxcik

)].

To simplify further, we consider fi,cik
(x; ci). Since fi(x) = χi(x, τ), we can

compute fi,cik
(x) = χi,cik

(x, τ) from the differential equation:

˙χi,cik(x, t) = ψk(χi)T (χi) + (ci ·Ψ(χi))DT (χi) · χi,cik , χi,cik(x, 0) = 0.

Using this in F (x; c1, c2) = [ f0,1◦f1(x;c1)
LC1

,
f0,2◦f2(x;c2)

LC2
], we get

Fc1k
= [Df0,1·f1,c1k

LC1
, 0] and Fc2k

= [0, Df0,2·f2,c2k

LC2
] . Since Fxcik

= Fcikx

and Fycik
= Fciky, we can write:

∂

∂cik
(|Fx ∧ Fy|) =

1
|Fx ∧ Fy |

[|Fy|2Fx · Fcikx + |Fx|2Fy · Fciky − (Fx · Fy)

(Fx · Fciky + Fy · Fcikx)].

6 Numerical Implementation

To discretize Eqs.(8-10), we use a finite difference scheme. For any map T defined
on Ω let Tpq denote its value at the pixel xpq = [ph, qh], where h is the pixel
size. We use gradient-descent to minimize the energy (7) over IRN × IRN ×
IR/2πZZ. Given initial values c0

1, c
0
2 and θ0, we iteratively solve for cm

1 , cm
2 and

θm, (m=1,2,3....).
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For an iterate cm
i , θm, let us denote fm

i,pq = fi(xpq) = χi(xpq, τ). We can
compute fm

i,pq by numerically solving the equation:

χ̇i(xpq, t) = (cm
i ·Ψ(χi(xpq, t)))T (χi(xpq, t)), χi(xpq, 0) = xpq.

for t ∈ [0, τ ].

Let fm
i,cik,pq denote ∂fi

∂cik
(xpq; cm

i ) = ∂χi

∂cik
(xpq, τ), (k = 1, ..N). We can com-

pute fm
i,cik,pq by numerically solving the equation:

˙χi,cik(xpq, t) = ψk(χi)T (χi) + (cm
i ·Ψ(χi))DT (χi) · χi,cik , χi,cik = 0

for t ∈ [0, τ ]. At the iteration m, the bimorphism is given by Fm = [ f0,1◦fm
1

LC1
,

f0,2◦fm
2

LC2
].

Hence, writing um = [cm
1 , cm

2 , θm] we arrive at the discrete form for the
Euler-Lagrange equations (8)-(10):

Ec1k
(um) =

∑
p,q

δε(Φpq)V̂
m

pq.Dvm
1,pq.Df0,1.f

m
1,c1k

|Fm
x ∧ Fm

y |+

|V̂ m

pq|2
∂

∂c1k
(|Fm

x ∧ Fm
y |) = 0, (11)

Ec2k
(um) =

∑
p,q

δε(Φpq)(−V̂
m

pq.RθmDvm
2 .Df0,2.f

m
2,c2k

)|Fm
x ∧ Fm

y |

+|V̂ m

pq|2
∂

∂c2,k
(|Fm

x ∧ Fm
y |) = 0, (12)

Eθ(um) =
∑
p,q

δε(Φpq)(−V̂
m

pq.R
′
θmvm

2,pq)|Fm
x ∧ Fm

y | = 0 (13)

(k = 1, ..N), where δε(t) is a regularized approximation for δ(t)(see [9] for de-
tails). In (11)-(15), the derivatives are approximated using first-order difference
schemes. We summarize the algorithm as follows:

Input initial u0

for N = 1, 4, 8...
for m = 0, 1, 2...

From um obtain (fm
1 , fm

2 , fm
1,c1k

, fm
2,c2k

) using (11,12).
Compute ∇E(um) using (13)-(15).
Update um+1 using gradient descent.

end
Re-initialize u0.
end

(14)
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The step N=1,4,8... is necessary for the algorithm to avoid local minimizers of
(6). We start with a given u0 for the N=1 step and re-initialize u0 for next
value of N , by interpolating the minimizer for the current value of N . This is
continued until the change in energy (6) goes below a threshold.

The diffeomorphisms f0,1 and f0,2 map the annular region Nε(C) to neigh-
borhoods of C1 and C2(Fig.1). Note that the minimum value (if it exists) is
independent of choices of f0,i. Hence we are free to choose f0,i as simply and
quickly as possible (e.g. by linear interpolation of some parameter).

7 Curves of Arbitrary Topology

So far we have restricted to the case when the curves being matched have the
circle-topology. The model as it is can be used to match two arbitrary, closed,
0-level curves of the same topology. An interesting extension is to match closed,
0-level-curves with different topologies. Below, we briefly introduce shape-based
bimorphisms between implicitly-defined curves C1 and C2 of arbitrary topology.

For simplicity, in this paper we consider only the case in which C1 has the
circle-topology and C2 has the topology of two non-nested circles. Let p1 and
p2 be any two distinct points on C. We denote C̃ = C − {p1,p2}.

Fig. 2. Bimorphisms for multiple-
curves of different topology

Fig. 3. Computing bimorphism search
space for the different topology case

A bimorphism between the implicitly-defined curves C1 and C2 is a map
υ : C̃ → (C1 × C2) ⊆ IR4 given by υ = [ f̂1

LC1
, f̂2

LC2
]. Here, f̂1 is the restriction

to C̃, of a diffeomorphism from C to C1, and f̂2 : C̃ → C2 is a diffeomor-
phism(preserving C2’s orientation) whose image is C2 minus two points, one on
each of the connected components of C2.(Fig.2). Denote the images of the maps
fi by C̃i.
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Fig. 4. Shape-based bimorphism be-
tween 2 shark curves. Colored segments
on C are mapped to the same-colored
segments on C1 and C2.

Fig. 5. I. Initial correspondence: colored
segments not matched properly. II. Shape-
based bimorphism computed: Colored seg-
ments in Vase 1 and Vase 2 are properly
mapped.

A shape-based correspondence between C1 and C2 is a bimorphism that
minimizes the energy:

ÊC1,C2 [f̂1, f̂2, Θ] =
∫

[υ]
|v1(f̂1)− RΘv2(f̂2)|2dsυ (15)

where Θ is a locally constant function.
We now construct a search space for the diffeomorphisms f̂i. Each curve Ci is

first mapped to a topological representative C0,i(a disjoint union of circles). Let
q1 and q2 be any two points arbitrarily chosen, one on each of the components
of C0,2. Denote C̃0,2 = C0,2 − {q1, q2}. Let u1 : C̃ → C0,1 be a diffeomorphism
to its image and u2 : C̃ → C̃0,2, a diffeomorphism. The maps ui are also chosen
such that they preserve the orientation of C0,i.

Now, any diffeomorphism f̂i : C̃ → C̃i can be computed as f̂i = f̄i ◦ ui,
where f̄i : C0,i → Ci is a diffeomorphism.(Fig.3). Further, the set of minimizing
bimorphisms for (17) if nonempty, is invariant with respect to the choice of pi

and qi. Hence, these points can be picked in any convenient manner.
Our search for maps f̂i is simplified to the search for diffeomorphisms, f̄i.

But, we already have a framework to construct the space of diffeomorphisms
f̄i : C0,i → Ci, that is to decompose f̄i as f̄i = f0,i ◦ fi, where f0,i : C0,i → Ci

are initial maps and fi : C0,i → C0,i are time-τ flows of tangential vector-fields
Xi = aiT̃i on C0,i. The functions ai, chosen to be at least Lipschitz, then model
the search space for f̄i.

Similar to previous cases, let Nε(C),Nε0,i(C0,i), be the corresponding neigh-
borhoods of C and C0,i respectively. Let Ωε0 = Ω − (Nε0(p1)

⋃
Nε0(p2)), where

Nε0(pi) is a small neighborhood of pi. The energy (17) can be written as a mini-
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mization problem over the space of Lipschitz functions ai defined over Nε0,i(C0,i)
and locally constant Θ defined over Nε0,2(C0,2):

E2(a1, a2, Θ) =
∫

Ωε0

δ(Φ)|v1(f0,1 ◦ f1(u1(x); a1))− RΘv2(f0,2 ◦ f2(u2(x); a2))|2

|Fx ∧ Fy|dx

where, F = [ f0,1◦f1◦u1
LC1

f0,2◦f2◦u2
LC2

].

8 Results and Applications

The first experiment was on synthetic ’shark’ data. Given the signed distance
functions for the two ’shark’ curves C1 and C2, we use algorithm (16) to compute
a shape-based bimorphism υ : C → C1 × C2, υ = [f̂1, f̂2]. between the curves
(see Eqn.(3)). To visualize the bimorphism υ, the circle C is partitioned into
segments, each of a different color. Each segment’s image under the bimorphism
is indicated by segments of the same color, on the curves C1 and C2 Fig.4. In
Fig.5, we see two ’vase’ curves being matched. We have chosen more colored
segments here to show the bimorphism. In the ideal case when the two curves
differ only by rigid motions or local stretching, the shape-matching is accurate
for any resolution of the segments chosen. In Fig.6, the model shows capability
to recover large non-rigid deformations.

In Fig.7, preliminary results on synthetic data, for matching/tracking curves
of arbitrary topology, are shown. In (I), the curve on the left splits into two

Fig. 6. Large-deformation test. I. Ini-
tial correspondence. II. Correspon-
dence at N=4. III. Shape-based bimor-
phism computed.

Fig. 7. Matching level curves of arbitrary
topology I. Tracking splitting curves. II
and III. Multiple Curve matching.
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Fig. 8. Tagare’s MRI Heart Data I. Initial correspondence. II. Correspondence com-
puted by (16) after N=1 step. III. Final non-Rigid bimorphism computed by (16).
IV. The same bimorphism as in (III), linking the sample points used on the outer
curve by Tagare to the corresponding points on the inner curve. V Tagare’s result.

curves. Colored segments of similar shapes are tracked before and after the
splitting, using (17). (II) and (III) show matching of multiple curves of the
same topology.

In Fig.8, we tested on Tagare’s data (available in his website http:// noo-
dle.med.yale.edu /hdtag/) of the endocardium of a dog’s heart. The curves are
the endocardial boundaries at end-systole and end-diastole. Picture (V) is the
result computed by Tagare’s algorithm for parametric bimorphisms. We used the
same sample points as seen in (V) for the outer curve and find the corresponding
points on the inner curve. (see IV). To minimize (6), we start with N=1 in (16)
with c=0,d=0,θ = 0, ξ = .4, ε1 = 1. We found stable convergence for N=16 in
35 iterations.

9 Comparison

Table.1 shows a comparison of the model’s capabilities with some of the existing
implicit matching methods.

Unlike existing methods that are suitable for curve-matching, our model is ap-
plicable to both shape-matching and to motion-tracking. By definition, the prob-
lem is to find diffeomorphic correspondences between given two 0-level curves.
The input curves C1 and C2 are required to be at least Lipchitz continuous and
we do not handle the case of data with outliers.

Except for Paragios’ method, the other methods propose a large diffeomor-
phism setting using flows of suitable vector-fields on the entire image domain.
However we search for diffeomorphisms just between the curves, thus resulting
in a smaller search space for the vector fields. Further, our use of a shape-based
matching criterion(i.e.normals) makes the energy invariant under scaling and
rotation of the curves C1 and C2.
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Table 1. Comparisons of our method with several current implicit matching methods

Features/Methods Our Method Paragios[23] Guo [10] Glaunes[8]

Applications Mot. Trk, Shp. Mat. Shp. Match. Shp. Match. Shp. Match.
Outlier Reject? No Yes Yes Yes
Shape Based? Yes No No No
Large defm.? Yes No Yes Yes
Search Space curve Diffeos 2D Smooth trans. 2D Diffeos 2D Diffeos
Symmetry ? Yes No No No
Invariance Scale/Rotation Scale/Rotation Rotation Rotation
Topology Arbitrary Same Same Same

Also our energy functional is minimized over a ”lifted space” of bimorphisms,
a set of curves on a torus C1×C2, satisfying certain conditions. This makes the
resulting correspondences symmetric under interchange of C1 and C2.

Lastly, unlike the mentioned methods, we have a natural way of match-
ing/tracking curves of arbitrary topology.
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Abstract. For non-rigid registration, the objects in medical images are usually
treated as a single deformable body with homogeneous stiffness distribution.
However, this assumption is invalid for certain parts of the human body, where
bony structures move rigidly, while the others may deform. In this paper, we in-
troduce a novel registration technique that models local rigidity of pre-identified
rigid structures as well as global non-rigidity in the transformation field using
triangular B-splines. In contrast to the conventional registration method based on
tensor-product B-splines, our approach recovers local rigid transformation with
fewer degrees of freedom (DOFs), and accurately simulates sharp features (C0

continuity) along the interface between deformable regions and rigid structures,
because of the unique advantages offered by triangular B-splines, such as flexible
triangular domain, local control and space-varying smoothness modeling. The ac-
curate matching of the source image with the target one is accomplished through
the use of a variational framework, in which a composite energy, measuring the
image dissimilarity and enforcing local rigidity and global smoothness, is mini-
mized subject to pre-defined point-based constraints. The algorithm is tested on
both synthetic and real 2D images for its applicability. The experimental results
show that, by accurately modeling sharp features using triangular B-splines, the
deformable regions in the vicinity of rigid structures are less constrained by the
global smoothness regularization and therefore contribute extra flexibility to the
optimization process. Consequently, the registration quality is improved consid-
erably.

1 Introduction

For the last decade, image registration has become an important technique for various
computer vision and medical applications, fusing the information from images acquired
either at different times or on multiple modalities. A number of reviews have been doc-
umented in [1][2][3]. The earliest attempts made by [4][5] typically restrict the defor-
mation between the corresponding images to be rigid and consider global geometric
differences only. Later, non-rigid registration was introduced in [6][7] to additionally
cope with local differences, resulting from different anatomy, intraoperative deforma-
tion, or distortion induced during imaging process. It is often assumed by the non-rigid
registration that the objects in the matching images behave as if they were a single
elastic body, i.e., the stiffness is constant everywhere. However, this is rarely the case
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c© Springer-Verlag Berlin Heidelberg 2005



236 K. Wang, Y. He, and H. Qin

when the imaged anatomy contains both rigid and soft structures. A practical clinical
example was described in [8] where the shape of the brain changed after subdural elec-
trodes were implanted in a surgical procedure. Neither a single rigid body motion nor
a nonlinear model with invariant smoothness can accurately represent the transforma-
tion between preoperative and postoperative scans since the electrodes translate and
rotate only, while the others deform nonlinearly. Therefore, more appropriate methods
are required to combine the modeling of both rigidity and non-rigidity in the recovered
transformation. Especially, the C0 continuity on the borders of rigid structures needs to
be simulated correctly for precise registration.

In principle, we could build patient-specific physical model to predict the interaction
between rigid structures and soft tissues. However, it is impractical to achieve solution
with desired accuracy due to high computational cost and insufficient details on mass,
elasticity, and other mechanical properties. The efforts made so far were either based on
interpolatory spline scheme or through a variational framework. Little et al.[9] incorpo-
rated independent rigid objects in a modified thin-plate spline (TPS) based nonrigid reg-
istration. Anisotropic landmarks were introduced by Rohr et al.[10] to TPS to enforce
local rigidity constraints. Duay et al.[11] simulated the rigid motions by adaptively
adjusting TPS radial basis functions according to local stiffness. Tanner et al.[12] rep-
resented the deformation using B-splines and locally couple control points in order to
model local rigidities. Most recently, Loeckx et al.[13] introduce a penalty term to keep
voxel-based rigidities in their variational framework by enforcing the orthogonality of
Jacobian matrix. Nevertheless, none of the above approaches, except that in [9], can
precisely describe C0 continuity in the displacement field. In spite of the attempt made
in [14], it’s not straightforward for thin-plate splines to be incorporated with variational
framework, which is quite a powerful tool for intensity-based image registration. On the
other hand, tensor-product B-splines has been widely used for optimization-based reg-
istration approaches [7][15][16]. Although it is possible for tensor-product B-splines to
describe sharp features when the corresponding knots collapse, such features can not
lie in arbitrary direction due to the regular domain of B-splines.

In this paper, we propose a novel non-rigid registration algorithm in which the re-
covered deformation field is represented by triangular B-splines. We first build the do-
main triangulation and adjust corresponding knots to the boundaries of pre-segmented
rigid structures. As a result, the C0 continuity is guaranteed at the desired places in the
displacement field. The landmarks, selected at the vicinities of rigid objects, are brought
into correspondence between source and target images as point-based constraints. The
optimal transformation is then estimated by minimizing a composite energy function,
which measures image discrepancy, deformation distortion, and desired local rigidities.
Empowered by the numerous advantages of triangular B-splines, such as flexible do-
main, local control, space-varying smoothness modeling, etc., our registration approach
makes the following contributions: The local linear motion in the global non-rigid trans-
formation, caused by rigid structures, can be accurately recovered using relatively fewer
degrees of freedom (DOFs), as long as the feature lines are properly aligned in the do-
main triangulation. With C0 continuity modeled at the interface between rigid and non-
rigid objects, the deformable region nearby can move more freely and tend to improve
the registration quality considerably.
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2 Theory and Construction of Triangular B-Splines

Triangular B-splines, introduced by Dahmen, Micchelli and Seidel[17], have numerous
desirable properties for geometric design, such as their automatic smoothness, the abil-
ity to define a surface over arbitrary triangulation, and modeling sharp features between
any desired adjacent primary knots [18]. Pfeifle and Seidel[19] presented an efficient
algorithm to evaluate quadratic triangular B-splines and Franssen et al.[20] extended it
to triangular B-splines of arbitrary degree.

The construction of triangular B-spline is as follows: let points ti ∈ R2, i ∈ N, be
given and define a triangulation

T = {Δ(I) = [ti0 , ti1 , ti2 ] : I = (i0, i1, i2) ∈ I ⊂ N
2}

of a bounded region D ⊆ R2. Next, with every vertex ti of T we associate a cloud of
knots ti,0, . . . , ti,n such that ti,0 = ti. The knots ti,0|i ∈ N are called primary knots,
and ti,j |i ∈ N, j ≥ 1 are called sub-knots. For every triangle I = [ti0 , ti1 , ti2 ] ∈ T ,

1. all the triangles [ti0,β0 , ti1,β1 , ti2,β2 ] with β = (β0, β1, β2) and |β| =
∑2

i=0 βi ≤ n
are non-degenerate.

2. the set
interior(∩|β|≤nX

I
β) �= ∅, XI

β = [ti0,β0 , ti1,β1 , ti2,β2 ]. (1)

3. If I has a boundary edge, say, (ti0 , ti1), then the entire area
[ti0,0, . . . , ti0,n, ti1,0, . . . , ti1,n) must lie outside of the domain.

Then the triangular B-spline basis function N I
β , |β| = n, is defined by means of simplex

splines M(u|V I
β ) (for details about simplex splines, please refer to [21]) as

N(u|V I
β ) = |dI

β |M(u|V I
β ),

where V I
β = {ti0,0, . . . , ti0,β0 , . . . , ti2,0, . . . , ti2,β2} and

(a) (b) (c) (d)

Fig. 1. Modeling sharp features using triangular B-spline with degenerate knots. (a) The domain
triangulation and regular knot configurations (no three knots in a domain triangle are collinear).
(b) Place the sub-knots along the user-specified edges of domain triangulation. (c) A cubic spline
surface reconstructed using the knot configurations in (a). The spline is C2 continuous every-
where. (d) A cubic spline surface reconstructed using the knot configurations in (b). The spline is
C2 continuous on smooth regions and C0 on sharp features. appropriately, we can model.
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dI
β = det(XI

β) = det

(
1 1 1

ti0,β0 ti1,β1 ti2,β2

)
.

Assuming (1), these B-spline basis functions can be shown to be all non-negative
and to form a partition of unity. Then, the triangular B-spline is defined as

F(u) =
∑
I∈I

∑
|β|=n

cI,βN(u|V I
β ), (2)

where cI,β is the control point. This spline is globally Cn−1 continuous if all the sets
XI

β , |β| ≤ n are affinely independent.
One favorable advantage given by triangular B-splines is that by adjusting sub-

knots to the feature lines explicitly, we can model local sharp features (i.e., C0 conti-
nuity) in the approximated space, while keeping the Cn−1 smoothness over the other
regions. This feature is demonstrated in a surface reconstruction example shown in
Fig.1.

3 Method

Given source image Is, and target image, It, defined on the domain Ω ⊂ R2, the
problem of registration is to find an optimal geometrical transformation T : Ω → R2

such that the pixels in both images are matched properly.

3.1 Transformation Model

To reduce the global geometric differences between Is and It, an initial alignment is
achieved using conventional rigid registration algorithm. This obtained transformation
will be used as the initial estimation for the following registration.

The concept of free-form deformation (FFD) is to deform an object by manipu-
lation underlying control points. In our work, the FFD is decomposed as an identity
transformation plus a displacement field, which is represented by triangular B-splines
as:

T(x) = x + u = x +
∑

i=1..m

φiBi(x), (3)

where φi is the control point and Bi is the associated basis function.
Unlike tensor-product B-spline based FFD[15], whose domain is a rectangular lat-

tice, our triangular B-spline based FFD has its domain built upon a tessellation of either
triangles for 2D or tetrahedra for 3D. It is not difficult to triangulate the reference im-
age domain Ω using established techniques. In order to model the sharp features (see
Fig.3(c)) at the boundaries of pre-identified rigid bodies, we have to keep them in the
triangulated tessellation. Such constraints can be satisfied using the triangulation algo-
rithm proposed by Shewchuk[22]. According to the definition of triangular B-splines,
the free-form deformation field has Cn−1 continuity everywhere if there is no degener-
acy for any triple of knots in the same triangle. However, we purposely collapse adjacent
sub-knots to pre-identified feature lines in order to model desired C0 continuity.
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Due to the flexibility of the domain triangulation, it is also possible for users to
overlay the registration domain exactly upon the region of interest (ROI), rather than
covering the entire reference image. Thus, the computational effort will be saved con-
siderably, especially when the ROI can be successfully extracted.

3.2 Point-Based Constraints

Point-based constraints are incorporated in our framework for better registration. The
points on the boundary contours of rigid structure with high curvature are good
candidates for landmarks (see Fig.3(d)). Assuming strict rigidity of bony structures,
only two pairs of landmarks are required to fully recover local linear transformation
(i.e.,translation and rotation), if there is no rotoinversion. In practice, we often intro-
duce more constraints to ensure the stability of the registration.

Let P = {p1, . . . ,pn} be the set of landmarks chosen on the reference domain (It

in our implementation). Their correspondences in Is areQ = {q1, . . . ,qn} such that:

T(pj ;Φ) = qj for j = 1 . . . n, (4)

where Φ denotes the set of the control points of triangular B-splines. The above equa-
tions are treated as hard constraints and have to be strictly satisfied in the following
optimization process. In most cases, the linear system of (4) is under-determined. But
it is possible to become over-constrained when excessive landmarks are selected on a
single spline patch. Two approaches can be used to solve such problem. One is to subdi-
vide the triangular mesh, where there are overly-condensed landmarks, and re-initialize
the domain triangulation. The drawback of it is that the problem dimension is increased
accordingly. The other approach aims to find a compromised solution for (4), which
will be discussed later.

3.3 Cost Function

In this paper, we register Is to It using a variational approach, in which a metric mea-
suring image similarity and constraints of global smoothness and local rigidity are com-
bined into an overall cost function Etotal that is defined as:

Etotal = αEI + βER + γES , (5)

where α, β, and γ control the relative influence among three energy terms. In (5), EI

is the driving force behind the registration process and aims to maximize the image
similarity, whereas ER is a constraint term to ensure local rigidity and ES tries to
regularize the transformation as smooth as possible.

A number of approaches have been proposed in literature to calculate either sim-
ilarity or dissimilarity between images. Mutual information[23][24] and correlation
ratio[25] are the methods to measure image similarities, while the sum-of-squared-
difference (SSD) measures the dissimilarities. In our current work, we simply use SSD
metric to test the feasibility of our registration algorithm. The differences between Is

and It, represented by EI , is evaluated by:

EI =
1
2

∫
Ω

‖Is(T(x;Φ)) − It(x)‖2 dx. (6)
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In the theory of continuum physics, the non-rigid transformation is often measured
by Green-St. Venant strain tensor E. Then a necessary and sufficient condition to obtain
a local rigid transformation can be re-formulated as E = ∇u +∇uT +∇uT∇u = 0,
which enforces the strain tensor E to be zero over rigid structures. This is identical to
that proposed in [13], where the Jacobian matrices are considered instead. We enforce
the rigidity constraint by defining a penalty term as the integral of the Frobenius norm of
E. Since different structures in the image exhibit different deformation properties, and
do not need to deform similarly, we introduce a characteristic function w(x) to separate
the rigid objects from deformable regions. The value of w(x) is 1 on rigid structures
and 0 elsewhere. The penalty term for local rigidity is given by:

ER =
1
2

∫
Ω

w(x)
∥∥∇u +∇uT +∇uT∇u

∥∥2
F

dx, (7)

where ‖ · ‖F denotes the Frobenius norm.
A regularization term ES , measuring the bending energy of a thin plate metal sub-

ject to external forces[7][15], is also incorporated to discourage improbable or impossi-
ble transformations. It depends on the 2nd derivatives of the deformation and is written
as:

ES =
1
2

∫
Ω

(1− w(x))

[∥∥∥∥∂2u
∂x2

∥∥∥∥2

+
∥∥∥∥∂2u
∂y2

∥∥∥∥2

+
∥∥∥∥∂2u
∂z2

∥∥∥∥2

+2

(∥∥∥∥ ∂2u
∂x∂y

∥∥∥∥2

+
∥∥∥∥ ∂2u
∂y∂z

∥∥∥∥2

+
∥∥∥∥ ∂2u
∂x∂z

∥∥∥∥2
)]

dx, (8)

where the function w(x) makes the regularization term valid only over non-rigid re-
gions.

3.4 Optimization

The optimization problem is stated to find an ideal Φ such that the overall energy (5) is
minimized with the constraints in (4) satisfied. There are various algorithms available
to accomplish such constrained nonlinear programming task. In particular, we convert
the constrained optimization problem to a unconstrained one, rather than applying es-
tablished methods directly. Then a simplex line search approach described in [26] is
performed to update the parameters iteratively along the steepest descent of gradient
until the cost function can not be decreased any further.

Putting (3) and (4) together, we discretize the point-based constraints and write them
in a matrix format:

P + CΦ = Q, (9)

where P and Q are the vectors collecting the landmark positions in It and Is respec-
tively, the vector Φ consists of the control points of triangular B-splines, and the trian-
gular B-spline basis functions constitute the matrix C which is extremely sparse and
rank-deficient.
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By solving the original optimization problem in the Null-Space of C, we can suc-
cessfully remove the point-based constraints. Then, the new parameter vector Ψ in
Null-Space is related to the old one Φ by the equation:

Φ = NΨ + Φ0, (10)

in which CN = 0 and CΦ0 = Q − P. We use Gaussian-Jordan-Elimination-like
approach proposed in [27] to construct N, and solve for Φ0 by either singular value
decomposition (SVD) or QR decomposition, both of which are computationally viable
here, since most columns in C are zero.

Instead of estimating the gradient of Etotal using finite-difference approximation,
we analytically calculate the derivative with respect to Ψ and obtain:

∂Etotal

∂Ψ
= NT

(
α
∂EI

∂Φ
+ β

∂ER

∂Φ
+ γ

∂ES

∂Φ

)
, (11)

where

EI

∂φi
=

∫
Ω

(Is(T(x)) − It(x))∇Is |T(x) Bi(x)dx.

Let φij denotes the (3i + j )-th component of Φ and Bi,j be the derivative of the basis
function in j direction, where j = 1, 2, 3 for x, y and z coordinates, respectively. The
derivative of the local rigidity penalty term is:

ER

∂φij
=

∫
Ω

w(x)
∑

s,t=1,2,3

Mst
∂Mst

∂φij
dx

Mst =
∑

k=1...m
r=1,2,3

φktBk,s + φksBk,t + φksφktB
2
k,r

∂Mst

∂φij
=

∑
r=1,2,3

δjt

(
Bi,s + φisB

2
i,r

)
+ δjs

(
Bi,t + φitB

2
i,r

)
in which δij is Dirac function which equals to 1 if and only if i = j. Likewise, the
derivative of the regularization term is given by:

ES

∂φij
=

∫
Ω

(1 − w(x))

⎛⎝ ∑
s,k=1,2,3

φkjBk,sBi,s +
∑

s,t,k=1,2,3

φk,jBk,stBi,st

⎞⎠ dx,

where Bi,st stands for the second derivative of basis functions. For details on efficient
evaluation of triangular B-spline basis functions and their derivatives, please refer to
[19][20][28].

Note that the integration operation in (5) is performed only on the pixels of ROI.
Therefore, we could significantly speedup the registration procedure if all the basis
functions and their derivatives over the interested region are pre-computed.
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(a) (b) (c) (d)

Fig. 2. The first experiment: (a) Source image. (b) Target image. (c) Registration result when
sharp features are NOT modeled. The minimized energy terms are ES = 97.6, ER = 39.9. (d)
Registration result when sharp features are modeled, the minimized energy terms are ES = 71.8,
ER = 30.8.

4 Experimental Results

In order to evaluate the feasibility and applicability of the proposed algorithm, we test
it on both synthetic and real data. Cubic triangular B-splines are chosen in the experi-
ments to compare with the frequently used cubic tensor-product B-splines.

The first example demonstrated in Fig.2 doesn’t consider matching image intensi-
ties(i.e., α = 0 in (5)), but tries to align corresponding points instead. A green square is
included in the source image to represent a rigid object, and its counterpart is included
in the target image with a rotation of 45◦. 8 pairs of landmarks are selected at the corners
of both the image and the rigid square, and applied as the point-based constraints in the
registration. The target image is chosen as the reference domain, which is triangulated
into 32 patches, and the cubic triangular B-splines built on it have 361 control points.
After applying our algorithm without and with sharp feature modeling respectively, the
achieved registration results are plotted in Fig.2(c) and Fig.2(d). It is noticeable that the
background and the square are more smoothly connected in Fig.2(c) than in Fig.2(d),
because they are treated as a single elastic object in the former one, but considered as
separate parts in the latter one. It is more physically appropriate to model C0 continu-
ity between the background and the square, when we simulate the interaction between
them. Therefore, the method with sharp feature modeling can achieve better registra-
tion result (the minimized energy terms are ES = 71.8, ER = 30.8) than the other one
(ES = 97.6, ER = 39.9), when the same parameter setting (β = γ = 1) is used.

For the second example, both images (see Fig.3(a)(e)) include three geometric ob-
jects to represent rigid structures, whose positions are quite different in the source and
the target images. The reference domain (shown in Fig.3(b)) has 130 triangles and the
triangular B-splines thus have 631 control points. 13 pairs of landmarks are picked up to
ensure correct alignment between rigid structures (see Fig.3(f)). The registration result
and the recovered deformation field are shown in Fig.3(g) and Fig.3(h). An alternative
approach using tensor-product B-splines is also applied for the comparison purpose.
Its domain is defined on a 25 × 25 to match the number of triangular B-spline control
points. The comparison between the results from both approaches (shown in Fig.3(c)
and Fig.3(g)) indicates that the tensor-product based method fails to align the images at
a desired resolution, when there exist large deformations near rigid structures. In sharp
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The second experiment: (a) Source image. (e) Target image. (b) The domain triangula-
tion with feature lines highlighted in red. (f) 13 landmarks are highlighted in red. (c) Registra-
tion result obtained from tensor-product B-spline based method. (g) Registration result obtained
from triangular B-spline based method. (d) Deformation recovered using tensor-product B-spline
based method. (h) Deformation recovered using triangular B-spline based method.

contrast, triangular B-spline is built on a flexible domain, so that its modeling power
can be ideally concentrated on the interested region for better registration. Furthermore,
its power of modeling sharp features helps to improve the registration quality far more
better.

Two MRI images of human spines (see Fig.4(a)(b)) are used in the third experiment.
The spinal bones are first segmented from the target image, then the characteristic func-
tion w is set accordingly to decide where the rigidity constraints should be applied. The
source image is registered to the target image as shown in Fig.4, in which all of the rigid
structures are successfully matched.

Our algorithm is implemented using MS VC++, and all experiments are conducted
on a platform with 2.8GHz Pentium IV CPU and 1G RAM. Both synthetic images have
the size of 400× 400, and the size of the MRI images used for the third experiment is
512 × 512. The running time for the three experiments are about 1 minute, 6 minutes,
and 12 minutes respectively.

5 Discussion and Conclusion

This paper presents a nonrigid registration technique in which the transformation be-
tween corresponding images are represented by triangular B-splines. By preserving
feature lines in the domain triangulation and adjusting knots accordingly, the proposed
method successfully recovers local rigid motions and accurately simulates C0 conti-
nuities at desired regions, using relatively fewer degrees of freedom and lower degree
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(a) (b) (c) (d)

Fig. 4. The third experiment: (a) Source image. (b) Target image. (c) Registration result. (d) Rigid
structures segmented from the target image.

polynomials. The actual registration is done through the use of a variational frame-
work, in which a constrained optimization problem is solved to reduce the differences
between images and enforce both local rigidity and global smoothness at the same time.
The method has been tested on both synthetic examples and real data for its efficacy.

Although tensor-product B-spline based approaches are still dominating in the field
of non-rigid registration, their applicability is somehow limited due to the structure of
their regular domain. On the contrary, our registration method can correctly delineate
the boundaries of rigid bodies in its domain triangulation at a much coarser level, and
thus model the local rigid motions more accurately. Furthermore, with the degenerate
knots on the boundaries of rigid structures, C0 continuity is automatically guaranteed
in the described displacement field, and can be naturally coupled with the optimiza-
tion process. This advantage enables us to precisely simulate the behavior of rigid ob-
jects inside elastic tissues. From the registration point of view, the deformable regions
around the rigid structures may become less constrained by the regularization term and
contribute extra flexibility to the minimization of the cost function (5). As a result, the
registration quality can be considerably improved. An alternative way to model C0 con-
tinuities could be to separate rigid and non-rigid regions into different domain pieces.
However, extra efforts must be spent to keep the overall transformation consistent across
different pieces in a different hierarchy, and in general, the variational approaches over
irregular domains in a hierarchical fashion have not been fully explored. In this paper,
only rigid structures with simple geometric shapes are considered in our experiments
for the feasibility test. To accommodate more complicated structures, we can subdi-
vide the domain mesh adaptively along their boundaries until the desired accuracy is
achieved. The landmarks applied in our registration are interactively selected by users
based on their knowledge and subjectivity. Naturally, the registration result is affected
by the quality of landmark selection.

There are a few possible extensions to our current work. Although only the registra-
tion of two dimensional images is considered in this paper, it is much more natural to
extend it to the area of volumetric data registration, and trivariant tetrahedral B-splines
shall be exploited. Alternative metrics measuring image similarities, such as mutual
information and normalized correlation, can be incorporated into our variational frame-
work to deal with multi-modality registration. One limitation of our current approach
is the necessity for image segmentation and landmark selection prior to our registration
procedure. It would be ideal to have an automated method to select landmarks, seg-
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ment images into different pieces, and accurately match corresponding rigid structures
in order to streamline the task of medical image processing.
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Abstract. We develop a practical, symmetric, data-driven formulation,
geodesic image interpolation (GII), for interpolating images with respect
to geometric and photometric variables. GII captures, in implementation,
the desirable properties of symmetry that comes from the theory of dif-
feomorphisms and Grenander’s computational anatomy (CA). Geodesic
diffeomorphisms are a desirable transformation model as they provide
a symmetric deforming path connecting images or a series of images.
Once estimated, this geodesic may be used to (re)parameterize and in-
terpolate image sets in approximation of continuous, deforming dynamic
processes. One may then closely recover the original continuous signal
from a few samples. The method, based on our work in symmetric dif-
feomorphic image registration, generalizes the concept of point set repa-
rameterization to the case where point sets are replaced by image sets.
This problem differs from point reparameterization in that a variational
image correspondence problem must be solved before resampling. Our
image reparameterization method is applied to solve similar problems to
point reparameterization: dense interpolation, matching and simulation
of dynamic processes are illustrated.

1 Introduction

Deformation-based interpolation between a pair of images is a common require-
ment in computer vision. Shape-based or deformable interpolation methods have
been used for image morphing and animation [1,2], interpolating motion se-
quences [3,4], reconstructing medical image volumes [5] and in texture map-
ping [6]. Shape-based/deformable data-driven interpolation methods have histor-
ically been limited by small deformation assumptions about the correspondence
[7,8,5,9] and, relatedly, asymmetry (which is not present in linear/cubic/sinc
interpolation). Some methods require prior segmentations [8,5]. The small de-
formation approximation has limited application in real world problems where
large deformations are often present. The sparse landmark assumption, as used
in Adobe Photoshop c©, is also limited in that it requires manual intervention, is
asymmetric and uses only a few correspondence points. Asymmetry originates,
in all these approaches, in the image registration or transformation models un-
derlying the correspondence computation.
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The need for image registration is the main factor that distinguishes shape
or registration-based interpolation from intensity-only interpolation. A common
problem with image registration (IR) algorithms, in general, is asymmetry. Reg-
istering image I to J does not produce the same correspondences as registering
J to I. This is particularly important in medicine, where results of clinical stud-
ies influencing patient treatment [10,11,12] should not depend upon arbitrary
decisions made in the image processing chain, nor should an algorithm need
to be tuned due to its unintuitive directionality. The goal of geodesic image
interpolation is to resolve these complications in a fundamental way.

Our symmetric shape and appearance interpolation algorithm is illustrated
with an example in figure 1. It will satisfy the principles:

1. Continuity – the algorithm’s output should vary continuously with its inputs
(also a condition of well-posedness), here, a set of images.

2. Anonymity – the output should not vary with permutations of the inputs,
i.e., if the order of the images changes.

3. Unanimity – if all the inputs are identical, the output is the input.

One can easily see that linear intensity only interpolation satisfies these condi-
tions. Eckmann and Shmuel gave this set of axioms, originally, in the context of
social choice [13,14], a problem domain in economics. However, these principles
apply naturally to image registration and interpolation, reflecting the assumption
that a single “true” solution to the problem exists and that it should be invert-
ible. Consider an algorithm, A, that gives an interpolated image, K, “half-way
between” images I and J , such that, K = A(I, J, 0.5). Logically, the algorithm
should output K if one calls A(J, I, 0.5). Unfortunately, for a variety of rea-
sons (including discretization error, lack of correspondence invertibility and the
inherent ill-posedness of the problem), this is not the case in existing approaches.

The main advancement required, here, is a symmetric deformable image reg-
istration method that gives dense correspondence between I and J in space and
time. Medical imaging interest in symmetric deformable image registration tech-
niques was renewed largely by Christensen’s inverse consistent image registration
method (ICIR) [15], but has been a subject of image registration research since,
at least, Thirion discussed the subject in [16]. However, neither algorithm uses
large deformation formulations or computes dense, invertible maps in space and
time, as we need here.

Large deformation geodesics were introduced into computer vision [17,18] for
this purpose. Current developments in large deformation computational anatomy
by Miller, Trouve and Younes extended the methods to include photometric
variation [19] and to use the Euler-Lagrange equations of CA [20]. However,
these methods are only symmetric with respect to their data and transformation
terms in theory and their implementation requires parallel computation [21].

Our research differs, in particular, from Miller, et al’s, in that we are focused
not just on geodesic endpoints but also on reconstructing a pair of maps and
inverses at any point along the geodesic. This enables us to map both image I and
image J symmetrically to the same position along the geodesic. It also allows us
to focus on ”blending” images in shape and appearance and on the interpolation
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problem, to our knowledge not studied by Miller, et al. This approach guarantees
symmetry in a fast optimization algorithm, even when similarity terms such as
mutual information are used [22]. Regardless of the input data or similarity
terms, our algorithm will satisfy desirable continuity, anonymity and unanimity
conditions as well as the theoretical symmetry conditions implied by geodesics.
This is achieved by simple manipulation of the optimization formulation and
algorithm.

Image registration, in the usual context, is interested in computing a map,
φ(x) = z, from image I to image J such that points in I correspond to points of
J . That is, I(x) = J(z) = I(φ1(x)) where, for simplicity, we take the equal sign
literally. For interpolation, we must introduce a time parameter to the map φ1.
We refer to coordinates x in the time zero I domain, z in the time zero J domain
and y in a common coordinate system that moves along the curve connecting
I(x) and J(z). For deformation-based image interpolation we need to be able to
define I and J at any y along the geodesic connecting the two images. This means
we must have time parameterized maps that give φ1(x, t) = y = φ2(z, 1 − t),
allowing us to deform I and J such that,

for any t ∈ [0, 1] I(φ1(x, t)) = J(φ2(z, 1− t)). (1)

This gives a dense map in both space and time and is illustrated in figure 2.
This paper will develop a method for symmetrically computing such maps.

These maps enable our interpolation method, geodesic image interpolation
(GII), to operate at the interface of photometric and geometric variation. One
can consider the method as a sliding metric between I and J that combines shape
and appearance components of each. The method is fundamentally symmetric,
will accomodate large deformations and also allows the flexibility of user-defined
landmarks and statistical image similarity for the correspondence computation.
Below, we follow background material on diffeomorphisms with a detailed devel-
opment of the GII methods.

2 Mathematical Background on Diffeomorphisms

We now discuss some basic facts from the mathematics of diffeomorphisms, the
mathematical underpinnings of GII. This section is derived from Arnol’d [23]
and Marsden and Ratiu [24]. In this section, we will refer to φ as a general
diffeomorphism.

We assume that the velocity fields, maps and images below are smooth,
that is, infinitely differentiable or, at least, sufficiently differentiable. Velocity
field smoothness guarantees the integrability necessary for generating diffeomor-
phisms. Typically, a linear operator, L, induces sufficient smoothness on the ve-
locity field. See Dupuis [18] for a discussion in the context of image registration.

A diffeomorphism is a smooth one-to-one and onto map with a smooth in-
verse. Families of diffeomorphisms can be generated by integrating time-depen-
dent velocity (vector) fields through an ordinary differential equation [23],
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Fig. 1. Our automated shape and intensity interpolation method is used to morph
between two automobile images, progressing left to right and top to bottom. Note that
the transformation, φ1, used for the morphing also details the shape difference and
allows texture mapping. The beetle texture is mapped to the ford at bottom right.
This mapping takes approximately two minutes with a mutual information similarity
metric on an unoptimized Apple G4 processor.

Fig. 2. An illustration of the geodesic path as it is used in interpolation. The curve
shows the progress of one point as it proceeds along the interpolation path. The maps
that parameterize the points are also given. The depth axis indicates increasing prox-
imity to the shape and appearance of the beetle.
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∂φ(x, t)
∂t

= V (x, t). (2)

Note that the full derivative dφ reduces to the partial derivative when solving
the o.d.e. in the Lagrangian frame. The V is a material velocity in the La-
grangian frame. The spatial velocity is computed at the tangent space to the
diffeomorphism at time, t, such that v(y, t) = V (x, t) with the map between
them given by φ(x, t) = y. Therefore, V (x, t) = v(φ(x, t), t). The velocities tell
us how particles are moving through space: V assigns motion to a specific mate-
rial point while v defines motion in a fixed coordinate system. The inverse map
is φ−1(y, t) = x. We will drop explicit dependence on t or x where the meaning
is clear. The group of deformable diffeomorphisms commonly used in image reg-
istration maps domain Ω to itself and is the identity at the boundary, ∂Ω, such
that φ(∂Ω) = ∂Ω. This boundary constraint assumes that rigid motion has been
factored out. It also guarantees the transformation is everywhere one-to-one and
onto and restricts the solution space to the diffeomorphic subgroup, Diff0.

1

The collection of diffeomorphisms forms the group, Diff. This is a Frechet
Lie group [25] when Diff is C∞. The length of a diffeomorphic path is similar to
the length of a curve, l(φ) =

∫ 1
0 ‖v(φ(t))‖dt, where the infinitesimal increment

in distance is given by the tangent to the diffeomorphism. A geodesic between
ψ1 and ψ2, two elements of Diff, is defined by taking the infimum over all such
paths [20],

D(φ(0), φ(1)) = inf
φ

∫ 1

0
‖Lv(φ)‖dt, (3)

φ(0) = ψ1 and φ(1) = ψ2.

Taking the infimum guarantees that we have a geodesic between the elements in
Diff. The length of the geodesic gives a metric distance measuring the amount
of deformation caused by the diffeomorphism and will be fundamental to our
symmetric formulation. The shape-based distance between images is given by
setting I(φ(0)) = I and I(φ(1)) = J . This distance does not depend on the
origin of its measurement (it has right invariance) and is the basis for GII. Note
the shorthand φ(1)I = I(φ(x, 1)) where we use the notation convenient for the
context.

3 Intrinsically Symmetric Image Registration

The diffeomorphism group, Diff, has several benefits for image processing. Fore-
most are that diffeomorphisms are composable and may be used to optimize
variational energies, including landmark and intensity similarity measures, while
maintaining domain topology. For example, our previous work [26] developed the
Lagrangian Push Forward (LPF) method for diffeomorphic image and landmark
matching.
1 If a transformation is only a homeomorphism, one will lose, at least, the uniqueness

properties given by initial conditions that are special to diffeomorphisms [23].
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Without landmarks, LPF finds diffeomorphism, φ1, connecting two images,
I and J , by minimizing the global variational energy,

inf
φ1

∫ 1

0
‖v‖2Ldt +

∫
Ω

ω|I(φ1(x)) − J(z)|2dΩ. (4)

The first term is the deformation cost where ‖v‖L = ‖Lv‖ and L is a regularizer
chosen from continuum mechanics, for example, ∇2 + Id. The second term in
the equation is a data term, Π , measuring the image difference with weight ω.
The version of the similarity given here assumes I and J are identical up to a
change of coordinates. Rarely used in morphing, the data term allows the image
mapping to be fully automated or minimally guided by a user. Our work com-
paring chimpanzee and human cortices used both image similarity and expert
landmarks to constrain the solution.

LPF generates both φ1 and φ−1
1 , however it does not guarantee symmetric

results numerically or when matches are inexact. That is, the geodesic path
computed from I to J may not be the same when it is estimated from J to I.
Nor does LPF directly generate φ2, the map over all time defining motion of
material in the J coordinate space. Although we use the novel ability of LPF to
generate φ1, φ

−1
1 , we must reformulate equation 4 and extend LPF to give dense,

symmetric space-time matching in real-world problems.

3.1 Symmetric Correspondence Formulation

A basic fact of diffeomorphisms allows them to be decomposed into parts [23]. We
can thus write φ1 defined in the domain cross parameterization space, Ω× [0, 1],
as

φ1(x, 1) = φ−1
2 (φ1(x, s), 1− s). (5)

We also have φ2(z, 1) = φ−1
1 (φ2(z, 1 − s), s) and, at endpoints, φ2(z, 1) =

φ−1
1 (z, 1) and φ1(x, 1) = φ−1

2 (x, 1). The map, φ2, defines particle motion from
the J coordinate system. Note that φ1(x, 1) = φ2(z, 0) = z, the identity in
the φ2 space. For image registration, this also gives I(x) = J(φ2(z, 1)) with
φ1(x, t) = φ2(z, s) for all t = 1− s.

These transformation components are important because it is more efficient
and numerically symmetric to store/compute the φi and their inverses in [0, 0.5],
than throughout [0, 1]. This is because φ1 and φ2, defined in these intervals, allow
one to reconstruct any point (or inverse) from φ1 or φ2 in [0, 1]. We will see how
this is done in the following sections.

First, we give a variational energy that explicitly divides the image registra-
tion diffeomorphisms into two halves such that I and J contribute equally to
the path and deformation is divided between them. This prior knowledge can
be captured by including the constraint D(Id, φ1(x, 0.5)) = D(Id, φ2(z, 0.5))
directly in the optimization algorithm. The result is a method that finds cor-
respondences with equal consideration of both images. Note that below we will
derive the equations assuming Π as before, for simplicity. However, in actuality,
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we have a variety of statistical image similarity measures (robust intensity dif-
ference, cross-correlation, mutual information) at our disposal, as in [22,27], or
employ user landmarks as in [26].

A geodesic path φ1 (equivalently φ2) has the following global properties which
should be reflected in our estimation method,

1. The geodesic minimizes the energy,

inf
φ1,φ2

{
∫ 1

0
‖v‖2Ldt +

∫
Ω

ω(|φ1(1)I − J |2 +

|φ2(1)J − I|2) dΩ },
where φ1, φ2 ∈ Diff0 relate as above. (6)

2. Its length is given by, for each i, l(φi) =
∫ 1
0 ‖v(φi)‖dt.

We now build the Intrinsically Symmetric variational energy, finding φ1 and
φ2 by simultaneously optimizing the image registration problem both forward
and backward in time. The motivation for solving this problem instead of (6) is
to, first, induce symmetry and, second, it is more efficient to “meet” at the mean
because we find two paths of length 0.5 rather than two of length 1.0. Another
consideration is that we would like to use features from both images I and J
to equally guide the correspondence. The same technique is used in dual source
shortest path algorithms [28].

Define the image registration optimization time, t ∈ [0, 1] where t indexes
both φ1 and φ2, though in opposite directions. The similarity seeks φ1 such that
φ1(x, 1)I = J . 2 Recall the basic definition of diffeomorphisms allows us to write
any geodesic through composing two parts. Then,

φ1(x, 1)I = J,

φ−1
2 (φ1(x, s), 1 − s)I = J,

φ2(φ−1
2 (φ1(x, s), 1 − s), 1− s)I = φ2(z, 1− s)J,

φ1(x, s)I = φ2(z, 1− s)J, (7)

gives the similarity term, |φ1I − φ2J |2. The forward and backward energy is
then, using t as a parameter and solving to time t = 0.5,

Esym(I, J) = inf
φ1

inf
φ2

∫ 0.5

t=0
ω{ ‖v1‖2L + ‖v2‖2L}dt +∫

Ω

|I(φ1(0.5))− J(φ2(0.5))|2dΩ. (8)

Subject to:
v1(0.5) = v2(0.5), ‖v1(t)‖2L = ‖v2(t)‖2L

with each φi ∈ Diff0 the solution of:
dφi/dt = vi(φi(t)) with φi(0) = Id. (9)

2 We can interpret the equal sign as meaning equivalent according to our similarity
criterion.
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Minimization with respect to φ1 and φ2, upholding the arc length constraint,
provides the intrinsically symmetric image registration (ISIR) solution and also
solves a 2-mean problem. Landmarks may also be included, as in the LPF
method, by dividing the similarity term, as done with the image match terms
above. We assume that if either v1 = 0 or v2 = 0, then both are 0.

The two external constraints on the problem are critical. Recall that there
is only a single velocity field (defining the geodesic’s tangent) at any single
time along the full geodesic. The first constraint, v1(0.5) = v2(0.5), explicitly
guarantees that this is true at the midpoint where the velocity fields merge in
time. The second is the a priori geodesic averaging constraint, D(φ1) = D(φ2),
where D is the distance of equation 3. It is enforced, in practice, by Lagrangian
multipliers. The geodesic mean constraint also enforces that the images I and
J contribute equally to the result. The image configurations I(φ1(0.5)) and
J(φ2(0.5)) are in “average” position. The total intrinsically symmetric trans-
formation from I to J is φ1(x, 1) = φ−1

2 (φ1(x, 0.5), 0.5) (equation 5) and from J
to I, φ2(z, 1) = φ−1

1 (φ2(z, 0.5), 0.5). This is distinct from inverse consistent im-
age registration [29] in which a variational term is used to estimate consistency
and where no mean is computed.

4 Geodesic Image Interpolation

We gave, in the previous section, an algorithm with symmetry properties one
finds in linear averaging. It main outputs, φ1 and φ2 are defined in [0, 0.5]. For
interpolation purposes, we need an efficient and numerically symmetric method
to allow φ1 and φ2 to be defined anywhere in [0, 1], the time/arc-length parame-
terization of φ1 and φ2. This dense definition in time will permit our geodesic
image interpolation where the path between pixels, i and j, is given by a geodesic
curve defined by the φi.

Consider the outputs φ1 and φ2. We compute the shape and intensity inter-
polation using the following properties of the methods:

1. Recall that the pixel i from I(x) is in correspondence with pixel j at J(z)
through φ2(z, 1−s) and φ1(x, s). We then have any pixel pair on the geodesic
by the definition of the φi in [0, 0.5],

φ2(z, 1 − s) = φ1(φ2(z, 1), s), (10)
and

φ1(x, s) = φ2(φ1(x, 1), 1 − s). (11)

These equations allow φ1 in [0, 1] to be found from φ2 in [0, 0.5] and φ1
defined at time 1; likewise for φ2. We choose, in practice, to compute φ2
from φ1, φ2(1) when s < 0.5 and φ1 from φ2, φ1(1) when s > 0.5. We resolve
the ambiguity at s = 0.5 by an arbitrary but symmetric rule.

2. Consider two intensity values, i from I and j from J , each taken from their
respective images warped to position φ2(z, 1 − s) = φ1(x, s) = y. Linear
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combination of the intensities may be parameterized by s such that geodesi-
cally interpolated intensity, k, is given as k(s) = (1− s)i + sj. If s = 1, then
k = j.

3. Given statements 1) and 2) above, the values of k are well-defined in time
interval τ = [0, 1] as φ1, φ1 and φ2 (along with inverses) are also well-defined
in τ .

This method uses the symmetric image correspondences gained by ISIR to per-
form geodesic image interpolation. The approach has the same properties of
traditional linear interpolation, given a geodesic, but allows for the fact that
interpolation sometimes requires a non-identity correspondence between pixels.

5 Applications and Results

Existing methods for registration-based interpolation [9] are asymmetric and
use small deformation assumptions. Our method resolves this issue while al-
lowing the interpolated image to be parameterized by arc length. The need
for registration-based interpolation is two-fold. First, geodesic diffeomorphism-
based methods permit one to interpolate slices in sparsely sampled volumetric
data with a rigorous mathematical metric. Linear, intensity only interpolation
leads to shape discontinuities and non-anatomical artifacts. This is illustrated in
figures 3 and 4. Second, one often needs dense, continuous estimates to properly
analyze discretely sampled dynamic processes, as when studying inter-patient
lung dynamics [30].

Fig. 3. The image at left is a section from an isotropic volumetric image of a sphere.
The image was subsampled in the z-dimension from 200 to 50 slices. GII was used to
reconstruct the 200 slice image and the result is shown at center. The reconstruction
with linear interpolation is at right. Shape discontinuities caused by linear interpolation
are not present in GII which almost exactly reconstructs the original image.

We now evaluate the ability of GII to interpolate missing data from real
datasets. To achieve this, we simulate missing data by removing every other
slice from 11 volumetric brain images. This procedure gives both realistic data
input for the algorithm and a ground truth against which to compare the recon-
struction. It also illustrates typical situations in which sparse sampling in one
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Fig. 4. The MRI image at left is reconstructed using GII while the image at right is re-
constructed with linear interpolation. While gains in reconstruction intensity difference
error are numerically modest (mean: 21.7% improvement, sdev: 15.1%), the visual dif-
ference is strikingly clear. This indicates that perhaps another measure, based on shape
continuity, would be more indicative of performance gains with respect to perceptual
value.

Table 1. Comparison of error between GII and linear interpolation. Larger values are
better. The reported value is 100(1−GII Error/Lin Error) where Error is the intensity
difference of the known slice and the interpolated slice.

Case: 1 2 3 4 5 6 7 8 9 10 11 12
% Geo Improvement: 12.4 12.7 18.4 17.8 13.8 18.3 19.4 18.6 20.0 15.6 34.0 65.8

image dimension or of a dynamic sequence causes anatomical discontinuity in
the images. Then, for each pair of neighboring slice images, I and J , the inter-
vening images may be interpolated from the geodesic connecting I and J or via
traditional linear interpolation. Representative results of this study are shown in
figure 4 and in table 1. The 12th case is the sphere example, where the sphere
has a radius of 90 voxels in a 200x200x200 voxel image.

We also choose a more taxing situation, where we operate on an 11 image
sub-domain for each of two examples. This allows us to leave out 9 slices from
each image. We can interpolate these 9 slices with GII and then evaluate the
quality of the match between the interpolated and original data. This directly
tests our ability to recover the “missing” slices from the image and corresponds
to a sparse out-of-plane image acquisition protocol. These protocols are typically
used in order to gain high in-plane resolution at the expense of volumetric sam-
pling. Geodesic interpolation compares very favorably with linear interpolation
(similar results were seen with sinc interpolation). In particular, obvious shape
discontinuities are greatly reduced and anatomical boundaries are more distinct
and continuous. Numerically, we have found that GII recovers missing data, in
this more texing experimental design, with 25-30% better intensity accuracy than
linear interpolation. Obvious improvements in visual clarity are also gained.

6 Conclusion

The GII method satisfies the axioms of continuity, symmetry and unanimity as
does the linear interpolation method. The geodesic measure of distance is lever-
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aged as a well-defined, deformation-based parameterization of deforming images,
allowing one to “place” intermediate images at specified positions between a pair
of “control” images. The algorithm can be used, in the pair-wise case, to com-
pute spatio-temporal correspondences, which can be applied to reparameterizing
dynamic sequences, given a pair of temporal end-points or to geodesic interpola-
tion. We also illustrated its use, briefly, for texture mapping, recovering unknown
intermediate shapes and missing data. Furthermore, ISIR generates a symmetric
measure of the metric distance between images – this measure provides the basis
for developing GII but can also be applied to defining a shape similarity measure
for computer vision applications.

A valuable improvement to the interpolation method will be a full space-
time optimizing solution. This will improve both the correspondence estimate
and temporal smoothness at the cost of increased computation time and mem-
ory. We will also add higher order continuity models for image interpolation.
We are particularly interested in large-scale application of these methods to de-
veloping a dynamic model of pulmonary anatomy. This will enable us to build
a spatiotemporal model of the normal breathing cycle in order to improve our
understanding of pathological conditions and normal variation in lung dynamics.
We would also like to apply the methodology more extensively to texture map-
ping and motion interpolation problems. Finally, as the methods currently take
on the order of seconds to minutes in 2D and minutes to hours in 3D, improving
coding strategies for these techniques is critical.
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Abstract. In this paper we describe a new framework for the tracking of closed
curves described through implicit surface modeling. The approach proposed here
enables a continuous tracking along an image sequence of deformable object
contours. Such an approach is formalized through the minimization of a global
spatio-temporal continuous cost functional stemming from a Bayesian Maximum
a posteriori estimation of a Gaussian probability distribution. The resulting mini-
mization sequence consists in a forward integration of an evolution law followed
by a backward integration of an adjoint evolution model. This latter pde include
also a term related to the discrepancy between the curve evolution law and a noisy
observation of the curve. The efficiency of the approach is demonstrated on image
sequences showing deformable objects of different natures.

1 Introduction

Tracking curves and contours is an important and difficult problem in computer vision.
As a matter of fact, the shapes of deformable or rigid objects may vary a lot along
an image sequence. These changes are due to perspective effects, self occlusions or
to complex deformations of the object itself. The intrinsic continuous nature of these
features and their high dimensionality makes difficult the conception of efficient non
linear Bayesian filters as sampling in large scale dimension is usually completely ineffi-
cient. Besides, the use of lower dimensional features such as explicit parametric curves
is limited to the visual tracking of objects with well defined shapes and that do not
exhibit any change of topology [2,15]. This kind of representation is for instance very
difficult to settle when focusing on the tracking of temperature level curves in satellite
atmospheric images, or simply when the aim is to track an unknown deformable object
with no predefined shape.

In such a context, approaches based on level set representation have been proposed
[5,6,8,11,12,14,16]. Nevertheless, apart from [11], all these solutions aim more at es-
timating successive instantaneous segmentation maps than at really tracking objects.
Indeed, in a formal point of view, they cannot be really considered as tracking ap-
proaches for several reasons. First of all, these methods are very sensitive to noise [9].
Unless the introduction of some statistical knowledges on the shape [3,7,13] these ap-
proaches do not allow to handle partial occlusions of the target. Since these methods do
not include any temporal evolution law on the tracked object shape, they are not able to
cope with severe failures of the imaging sensor (for instance a complete loss of image
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data, a severe motion blur or high saturation caused by over exposure). And finally, no
error assessment on the estimation is in addition possible. For all these reasons, only
approaches introducing basically a competition between a dynamical evolution model
and a measurement process of the target of interest enable to handle a robust tracking
in natural way. On the same basis, we propose here a variational method allowing to
combine these two ingredients for the tracking of non parametric curves.

Unlike the technique proposed in [11] which explicitly also introduces a dynamic
law in the curve evolution, our work includes in the same spirit as a Kalman smoothing
a temporal smoothing along the whole image sequence. In the same way as a Kalman
smoother the technique we propose here allows to estimate the conditional expectation
of the state process given all the available measurements extracted in the whole im-
age sequence. Nevertheless, unlike stochastic techniques our approach allows to handle
features of very high dimension.

The variational tracking technique we introduce relies on data assimilation concepts
used for instance in meteorology [1,4,17]. As will be demonstrated in the experimental
section, such a technique enables to handle naturally partial occlusions and a complete
loss of image data on long time period without resorting to complex mechanisms.

2 A System for Contour Tracking

As we wish to focus in this work on the tracking of non parametric closed curves that
may exhibit topology changes during the time of the analyzed image sequence, we will
rely on an implicit level set representation of the curve of interest Γ (t) at time t ∈
[t0, τ ] of the image sequence [12,16]. Within that framework, the curve Γ (t) enclosing
the target to track is implicitly described as the zero level set of a function φ(x, t) :
Ω × R+ → R:

Γ (t) = {x ∈ Ω | φ(x, t) = 0},
where Ω stands for the image spatial domain. This representation enables an Eulerian
representation of the evolving contours. As such, it allows to avoid the inescapable re-
griding ad-hoc processes of the different control points associated to any explicit spline
based Lagrangian description of the evolving curve. The problem we want to face thus
consists in estimating for a whole time range the state of an unknown curve, and hence
of its associated implicit surface φ. To that end, we first define an a priori evolution
law of the unknown surface. We will assume that the curve is transported at each frame
instant by a velocity fields ,w(t), and diffuses according to a mean curvature motion.
In term of the implicit surface this evolution model reads:

dφ

dt
=

∂φ

∂t
+ ∇φ(x, t)

T

w(t) = εκ‖∇φ‖, (1)

where κ denotes the curve curvature. Introducing the surface normal, equation (1) can
be written as:

∂φ

∂t
= − (w · n− εκ) ‖∇φ‖, (2)

where the normal and the curvature are given directly in term of surface gradient,

with κ = div

( ∇φ

‖∇φ‖

)
and n =

∇φ

‖∇φ‖ .
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At the initial time, the implicit function is assigned to a signed distance function up to
a white noise. More precisely, the value of φ(x, t0) is set to the distance g(x, Γ (t0))
of the closest point of a given initial curve Γ (t0), with the convention that g(x, t0)
is negative inside the contour, and positive outside. An additive white noise process
is added in order to model the uncertainty we have on the initial curve. Associated to
this evolution model and to the initialization process we previously described, we will
assume that an observation function Y (t) which constitutes a noisy measurement of
the target is available. This function will be assumed to be related to the unknown state
function φ through a differential operator H:

Y (x, t) = H(φ(x, t)) + ε(x, t), (3)

and a white Gaussian noise ε(x, t). Let us note that in our case, the continuous observa-
tion function, Y (t), is obtained from discrete image frames, In, through multiplication
by a family of localization functions. These functions can be defined from delta func-
tions at the observed time and location, or from more advanced spatio-temporal averag-
ing functions. Gathering all the elements we have described so far, we get the following
system for our tracking problem:⎧⎨⎩

∂φ
∂t + M(φ) = η(x, t)
φ(x, t0) = g(x, Γ (t0)) + ν(x, t)
Y (x, t) = H(φ) + ε(x, t)

(4)

In this system, M, denotes the differential operator involved in equation (2) and η,
ν and ε are time varying zero mean Gaussian noise functions defined on the whole
image plane, with covariance functions Q(x, t,x′, t′), B(x,x′), R(x, t,x′t′) respec-
tively. The noise functions represent the different errors involved in the different com-
ponents of our system.

3 Variational Tracking Formulation

3.1 Penalty Function

Considering a system such as the one we previously settled comes to fix the conditional
probability p(φ(t)|g), p(g|φ(t0)) and p(Y (t)|φ(t)). From these pdf’s, one get the a
posteriori density function up to a normalization constant. As all the error distributions
involved here are Gaussian, the a posteriori pdf is also Gaussian. The maximization
of this distribution is thus equivalent to the minimization of the following quadratic
penalty function:

J(φ)=
1
2 Ω,t Ω,t

∂φ

∂t
+ M(φ)

T

(x, t)Q−1(x, t,x′, t′)
∂φ

∂t
+ M(φ) (x′, t′)dt′dx′dtdx

+
1
2 Ω Ω

(φ(x, t0) − g(x, Γ (t0)))
T

B−1(x, x′) φ(x′, t0) − g(x′, Γ (t0)) dx′dx

+
1
2 Ω,t Ω,t

(Y − H(φ))
T

(x, t)R−1(x, t, x′, t′) (Y − H(φ)) (x′, t′)dt′dx′dtdx. (5)
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In this functional, x, denotes the spatial domain coordinates defined on the image do-
main Ω and t is a continuous time index lying within the image sequence time interval
[t0 = 0; τ ]. The minimizer of this expression minimizes a sum of norms expressing all
the possible correlations between errors at arbitrary two points of the image sequence.
The double space and time integrations are here due to the fact that the covariance
functions are first assumed to be non null for any two points (x, t) and (x′, t′) (cor-
related case) in order to stick to the most general case before considering a simplified
uncorrelated case corresponding to diagonal correlation matrices in a discrete setting.

In order to devise a minimizing sequence let us now derive the associated Euler-
Lagrange equations.

3.2 Euler-Lagrange Equations

Function φ is a minimum of functional J , if it is also a minimum of a cost function
J(φ + βθ(x, t)), where θ(x, t)) belongs to a space of admissible functions and β is a
positive parameter. In other words, φ must cancel the directional derivative :

δJφ(θ) = lim
β→0

dJ(φ + βθ(x, t))
dβ

= 0.

The cost function J(φ + βθ(x, t)) reads

J =
1
2 Ω

τ

0

∂φ

∂t
+ β

∂θ

∂t
+ M(φ + βθ)

T

Ω

τ

0
Q−1 ∂φ

∂t
+ β

∂θ

∂t
+ M(φ + βθ) dt′dx′ dtdx

+
1
2 Ω Ω

(φ + βθ − g)
T

B−1(φ + βθ − g)dx′dx

+
1
2 Ω

τ

0 Ω

τ

0
(Y − H(φ + βθ))

T

R−1(Y − H(φ + βθ))dt′dx′dtdx. (6)

Adjoint Variable. In order to perform an integration by part – to factorize this expres-
sion by θ– we introduce an "adjoint variable" λ defined by:

λ(x, t) =
Ω

τ

0
Q−1 ∂φ

∂t
+ M(φ) dt′dx′, (7)

as well as linear tangent operators (∂M

∂φ ) and (∂H

∂φ ) defined by

lim
β→0

dM(φ + βθ)
dβ

=
∂M

∂φ
(θ). (8)

By taking the limit β → 0, the derivative of expression (6) then reads

lim
β→0

dJ

dβ
=

∫
Ω

∫ τ

0

(
∂θ

∂t
+

∂M

∂φ
θ

)T

λ(x, t)dtdx

+
∫

Ω

∫
Ω

θ
T

(x, 0)B−1(φ(x′, 0)− g(x′, 0))dx′dx

−
∫

Ω

∫ τ

0

∫
Ω

∫ τ

0

(
∂H

∂φ
θ

)T

R−1(Y −H(φ))dt′dx′dtdx

= 0.

(9)
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Considering the three following integrations by parts, we can get rid of the partial deriv-
atives of the admissible function θ in expression (9), i.e.

Ω

τ

0

∂θ

∂t
λ(x, t)dtdx =

Ω

θ
T

(x, τ )λ(x, τ )dx −
Ω

θ
T

(x, 0)λ(x, 0)dx

−
Ω

τ

0
θ

T

(x, t)
∂λ

∂t
dtdx,

(10)

Ω

τ

0

∂M

∂φ
θ

T

λ(x, t)dtdx =
Ω

τ

0
θ

T

(
∂M

∂φ
)∗λ(x, t)dtdx, (11)

Ω

τ

0 Ω

τ

0

∂H

∂φ
θ

T

R−1(Y − H(φ))dt′dx′dtdx =

Ω

τ

0 Ω

τ

0
θ

T

(
∂H

∂φ
)∗R−1 (Y − H(φ)) dt′dx′dtdx.

(12)

In the two last equations, we have introduced adjoint operators (∂M

∂φ )∗ and (∂H

∂φ )∗ as
compact notations of the integration by parts of the associated linear tangent operators.
Gathering all these elements, equation (9) can be rewritten as

lim
β→0

dJ

dβ
=∫

Ω

θ
T

(x, τ)λ(x, τ)dx +
∫

Ω

θ
T

(x, 0)
[∫

Ω

(
B−1(φ(x′, 0)− g(x′, 0))− λ(x, 0)

)
dx′

]
dx

+
∫

Ω

∫ τ

0
θ

T

[(
−∂λ

∂t
+ (

∂M

∂φ
)∗λ

)
−

∫
Ω

∫ τ

0
(
∂H

∂φ
)∗R−1(Y −H(φ))dt′dx′

]
dtdx = 0.

(13)

Forward-Backward Equations. Since the functional derivative must be null for ar-
bitrary independent admissible functions in the three integrals of expression (13), all
the other members appearing in the three integral terms must be identically null. We
finally obtain a coupled system of forward and backward PDE’s with two initial and
end conditions:

λ(x, τ ) = 0 (14)

−∂λ

∂t
+ (

∂M

∂φ
)∗λ =

Ω

τ

0
(
∂H

∂φ
)∗R−1(Y − H(φ))dtdx (15)

λ(x, 0) =
Ω

B−1(φ(x′, 0) − g(x′, 0) dx′ (16)

∂φ(x, t)
∂t

+ M(φ(x, t)) =
Ω

τ

0
Qλ(x′, t′)dt′dx′. (17)

The forward equation (17) corresponds to the definition of the adjoint variable (7) and
has been obtained introducing Q, the pseudo-inverse of Q−1, defined as [1]:∫

Ω

∫ τ

0
Q(x, t,x′, t′)Q−1(x′, t′,x′′, t′′)dt′dx′ = δ(x− x′′)δ(t− t′′).
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We will discuss the discretization of these equations in the next section. Before that, we
can make several remarks. First of all, we can see that eq. (14) constitutes an explicit end
condition for the adjoint evolution model eq.(15). This adjoint evolution model can be
integrated backward from the end condition assuming the knowledge of an initial guess
for φ to compute the discrepancy Y − H(φ). To perform this integration, we also need
to have an expression of the adjoint evolution operator. Let us recall, that this operator
is defined from an integration by part of the linear tangent operator associated to the
evolution law operator. The analytic expression of such an operator is obviously not
accessible in general. Nevertheless, it can be noticed that a discrete expression of this
operator can be easily obtained from the discretization of the linear tangent operator. As
a matter of fact, the adjoint of the linear tangent operator discretized as a matrix consists
simply of the transpose of that matrix. Knowing a first solution of the adjoint variable,
an initial condition for the state variable can be obtained from (16) and a pseudo inverse
expression of the covariance matrix B. From this initial condition, (17) can be finally
integrated forward.

Incremental State Function. The previous system can be modified slightly to produce
an adequate initial guess for the state function. Considering a function of state incre-
ments linking the state function and an initial condition function, δφ = φ − ψ, and
linearizing the operator M around the initial condition function ψ:

M(φ) = M(ψ) +
∂M

∂ψ
(δφ),

it is possible to split equation (17) into two pde’s with an explicit initial condition:

ψ(x, 0) = g(x, Γ (t0)) (18)

∂ψ

∂t
+ M(ψ) = 0 (19)

∂δφ

∂t
+ (

∂M

∂ψ
)δφ =

∫
Ω

∫ τ

0
Q(x′, t′,x, t)λ(x, t)dtdx. (20)

The first equation initializes function ψ as a signed distance function corresponding
to the initial contours. Integrating forward equation (19) provides an initial guess of
the state function (assuming the increment is initially null). This initial guess can then
be used for the backward integration of the adjoint variable (15). The increment state
function is updated by a forward integration of equation (20). These two last integra-
tions successively iterated until convergence constitute the overall process.

4 Curve Tracking Implementation

In this section, we describe further the implementation of the method we propose for
object contour tracking. We present the discretization scheme we used and give the
analytic expression of the tangent linear operator associated to our evolution model.
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4.1 Tangent Linear Operator

Considering a (nonlinear) operator G mapping one element of an initial functional space
to another functional space, the tangent linear operator to G at point m is a linear oper-
ator defined by the limit:

lim
γ→0

G(m + γh)−G(m)
γ

=
∂G

∂m
(h) (21)

where γh is a small perturbation in the initial space. The tangent linear operator ∂G

∂m
is also known as the Gâteaux derivative of G at point m. Let us note that the Gâteaux
derivative of a linear operator is the operator itself.

In our case, the evolution operator reads:

M(φ) = ∇φ
T

w − ε||∇φ||div
( ∇φ

||∇φ||

)
.

This operator can be turned into a more tractable expression:

M(φ) = ∇φ ·w − ε

(
Δφ− ∇T

φ∇2φ∇φ

||∇φ||2

)
.

After some calculations, the tangent linear operator to M at point ψ finally reads:

(
∂M

∂ψ
)δφ = ∇δφ · w − ε Δδφ − ∇ψ

T ∇2δφ∇ψ

||∇ψ||2 + 2
∇ψ

T ∇2ψ

||∇ψ||2
∇ψ∇ψ

T

||∇ψ||2 − Id ∇δφ .

4.2 Algorithm Specification

Up to now, we did not specified yet the observation function Y associated to our track-
ing problem. In order to have the simplest interaction as possible, we defined it in the
same space as φ, that is to say H = Id. The observation of the evolving object contour
is set to the signed distance map to an observed closed curve, g(x, Γ (t)). Such curves
are assumed to be generated by a basic threshold segmentation method or provided by
some moving object detection method. These observations are generally of bad quality.
As a matter of fact, in the first case, very noisy curves are observed whereas in the later
case, when the object motion is too slow, there is no detection at all. As for the motion
field w, we used in this work an efficient and robust version of the Horn and Schunck
optical-flow estimator [10].

Combining equations (14-15-16) and (18-19-20), we finally get the following itera-
tive tracking system:

ψk=0(x, t0) = g(x, Γ (t0)) (22)

∂ψ0

∂t
+ M(ψ0) = 0 (23)
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λk(τ) = 0 (24)

−∂λk

∂t
+ (

∂M

∂ψk
)∗λk =

∫ τ

0
R−1 (Y − ψk

)
(25)

λk(t0) = B−1δφk(t0) (26)

∂δφk

∂t
+ (

∂M

∂ψk
)δφk =

∫ τ

0
Qλk(t). (27)

A forward integration of the initial condition function (23) is done at the first iteration.
Index k, represents the current iteration which consists of a backward integration of the
adjoint function and a forward integration of the increment function (24 - 27). At the
end of the iteration , ψ is updated according to the relation ψk+1 = φk = ψk + δφk.
We have chosen to represent the covariance matrix B as the diagonal matrix B(x,x) =
Id− e−|ψ(x,t0)|. In a similar way, we define matrix R from the observations Y , as

R = Rmin + (Rmax −Rmin)(Id− e−|Y (x,t)|).

This observation covariance matrix has therefore lower values in the vicinity of the
observed curves and higher values faraway from them. When there is no observed curve,
all the value of this covariance matrix are set to infinity. Otherwise, covariance matrix
Q, has been fixed to a constant diagonal matrix.

4.3 Operator Discretization

We will denote by φt
i,j the value of φ at image grid point (i, j) at time t ∈ [0; τ ]. Using

(23) and a semi-implicit discretization scheme, the following discrete evolution model
is obtained:

φt+Δt
i,j − φt

i,j

Δt
+ Mφt

i,j
φt+Δt

i,j = 0.

Considering φx and φy , the horizontal and vertical gradient matrices of φ, the discrete
operator M is obtained as :

Mφt
i,j

φt+Δt
i,j =

(
(φt+Δt

x )i,j

(φt+Δt
y )i,j

)T

w − ε

||∇φt
i,j ||2

(
−(φt

y)i,j

(φt
x)i,j

)T

∇2φt+Δt
i,j

(
−(φt

y)i,j

(φt
x)i,j

)
,

where we used usual finite differences for the advection term ∇φ
T

w and the Hessian
matrix∇2φ. The discrete linear tangent operator (27) is similarly defined as:

∂M

∂φt
i,j

δφt+Δt
i,j = Mφt

i,j
δφt+Δt

i,j − 2ε (A B)
||∇φ||4

(
(δφt+Δt

x )i,j

(δφt+Δt
y )i,j

)
,

where A and B are defined as:

A = φt
xφ

t
y(φt

xyφ
t
x − φt

xxφ
t
y) + (φt

y)2(φt
yyφ

t
x − φt

xyφ
t
y),

B = φt
xφ

t
y(φt

xyφ
t
y − φt

yyφ
t
x) + (φt

x)2(φt
xxφ

t
y − φt

xyφ
t
x).

As previously indicated, the discretization of the adjoint evolution model is obtained
as the transposed matrix corresponding to the discretization of the derivative of the
evolution law operator. Otherwise, we used a conjugated gradient optimization for the
iterative solver involved in the implicit discretization.
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5 Numerical Results

In this section, we present results we obtained for three different kinds of image se-
quences. The first sequence is a 16 frames sequence presenting a moving skate fish on
the sand (fig. 1). As this kind of fish possesses natural camouflage mechanisms, its lu-
minance and texture is very similar to the surrounding sand. The contours of such an
object are therefore really difficult to extract. For this sequence we used a simple seg-
mentation algorithm based on selection of intensity level curves. To further demonstrate
the robustness of our tracking approach, we only considered observations at every third
frames (i.e for k = 0, 3, 6, 9, 12, 15). It can be noticed on the second row of figure 1
that the global shape and the successive locations of the skate have been well recon-
structed at all time instants ∈ [t0, t16]. The noisy and instable observed contours have
been smoothed in an appropriated way. For instance, it can be outlined that the tech-

t = t0 t1 t3 t5

t8 t11 t15 t16

Fig. 1. Skate fish sequence. Top row: Sample of the observed curves. Bottom row: Recovered
curve superimposed on the corresponding image.
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t0 t3 t6 t9

t11 t13 t16 t18

Fig. 2. Ping pong player sequence.Top row: Sample of the observed curves. Bottom row: Recov-
ered curve superimposed on the corresponding image.

nique has been able to cope with the partial occlusion generated by the lifting of the
skate ventral fin (see images going from #5 to #15 in fig. 1).

The second sequence shows a person playing ping-pong. This is a 20 frames se-
quence where the camera is slightly moving backward. The observed curves are here
provided by a motion detection method. For this sequence, no mask were detected be-
tween frames #5 and #14. Mask contours were thus only available for frame #0 to #4,
and for frames #15 to #19. It can be noticed in addition that the observed curves are
locally varying a lot between two consecutive frames. For example the racket is not
always recovered by the motion detection technique. We show in figure 2 a sample of
the observed curves and the corresponding results. We can observe that the recovered
curves follow quite well the shape of the player even in the time interval for which no
observation was available.

As a last example, we show on Figure 3 results obtained on a meteorological im-
age sequence of the Meteosat infra red channel. The observed curve is a level line at
a given value within a region of interest. We aim here therefore at tracking an iso-
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t = t0 t2 t4 t6

t7 t9 t10 t12

Fig. 3. Clouds sequence. Top row: Sample of observed curves. Bottom row: Recovered results
superimposed on the corresponding image.

temperature curve. The results demonstrate that the technique we propose keeps the
adaptive topology property of level set methods, and in the same time, incorporates a
consistent temporal prior for the curve evolution.

As for the computation time of the method, our code takes less than 1 minute for a
forward-backward integration of a 20 frame sequence. It has to be noticed that our code,
written in C, has not been particularly optimized. For instance, the different integration
considered have been performed on the whole image plane. A significant reduction of
the computational load could be probably obtained considering a narrow band tech-
nique [16].

6 Conclusions

In this paper, we have presented a new technique for object contours tracking. The pro-
posed technique allows to estimate the contours location for each time instant within
the time interval of the analyzed sequence. In a similar way to a stochastic smoothing
the estimation is led considering the whole set of the available measurements extracted
from the image sequence. The technique is nevertheless totally different. It consists to
integrate two coupled pde’s representing the evolution of a state function and of an ad-
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joint variable respectively. The method incorporates only few parameters. Similarly to
Bayesian filtering techniques, these parameters mainly concern the definition of the dif-
ferent error models involved in the considered system. In our case, we have an additional
parameter that weight the mean curvature motion appearing in our dynamic evolution
model. The value of this parameter tunes the degree of smoothing of the curve (in our
experiences it has been always fixed to the same value of 0.1).

Acknowledgments. This work was supported by the European Community through the
IST FET Open FLUID project (http://fluid.irisa.fr).
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Abstract. In this paper, we propose a novel technique to address mo-
tion estimation and tracking. Such technique represents the motion field
using a regular grid of thin-plate splines, and the moving objects using
an implicit function on the image plane that is a cubic interpolation of
a ”level set function” defined on this grid. Optical flow is determined
through the deformation of the grid and consequently of the underlying
image structures towards satisfying the constant brightness constraint.
Tracking is performed in similar fashion through the consistent recov-
ery in the temporal domain of the zero iso-surfaces of a level set that
is the projection of the Free Form Deformation (FFD) implicit function
according to the cubic spline formulation. Such an approach is a compro-
mise between dense motion estimation and parametric motion models,
introduces smoothness in an implicit fashion, is intrinsic, and can cope
with important object deformations. Promising results demonstrate the
potentials of our approach.

1 Introduction

Motion perception is a fundamental task of biological vision with motion esti-
mation and tracking being the most popular and well-addressed applications. To
this end, given a sequence of images, one would like to recover the 2D tempo-
ral displacement (optical flow) and the position of objects of particular interest.
These applications often serve as input to high-level vision tasks, like 3D recon-
struction, etc.

Dense optical flow estimation is an ill-posed problem. The problem itself is
rather ill-posed since [1] the number of unknowns to be recovered is greater to the
number of constraints. Such constraints are determined through the linearization
of the visual or intensity preservation constraint [2]. Smoothness constraints [3]
are often considered to overcome the ill-poseness of the estimation process and
often lead to satisfactory results. A step further refers to the use of paramet-
ric motion estimation [4] where the motion in the entire image plane or some

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 271–282, 2005.
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portions of it is represented with a linear function of the pixel coordinates. To
this end, robust statistical methods [5] were considered to account for outliers
in the estimation process leading to promising results [6,7] when the assump-
tion on the motion form induced by the model is respected from the data. One
can claim that parametric motion models are efficient representations of optical
flow, a good compromise between low complexity and reasonable flow estimates
that suffer at the object boundaries. Moreover neither the case of non-planar
or objects undergoing non-rigid deformations can be addressed through such a
formulation.

Tracking non-rigid objects is a task that has gained particular attention in
computational vision. Starting from the pioneering formulation of the snake
model [8] several attempts to address tracking through the deformation of con-
tours can be found in the literature either model-free [9] or model-based [10].
Level set methods [11] is an established technique [12] to track moving inter-
faces through model-free [13] or model-based [14] methods with the advantage
of being implicit, intrinsic and parameter-free. However they suffer from com-
putational expensive processing [15] while one should preserve the form of the
implicit functions through frequent re-initialization steps. Such a limitation was
addressed in [16] where a finite element approach was considered to implement
a level set flow.

In this paper, we introduce a higher-order polynomial approach to address
dense optical flow estimation and tracking within the level set approach. To this
end, we represent motion using a free form deformation of a super-imposed reg-
ular connected grid, an excellent alternative to dense motion estimation as well
as to parametric motion models. Tracking is addressed through the modifica-
tion of a ”level set” function on the FFD space such that its projection on the
image space captures the object boundaries. Visual preservation, consistence in
the object appearance and smoothness constraints are used to determine the
deformation of the implicit grid towards simultaneous motion estimation and
tracking of objects in successive frames.

Prior art in joint optical flow estimation and tracking has mostly addressed
the case of parametric (mostly affine) motion within the standard level set formu-
lation [17,18,14,19,20]. The reminder of this paper is organized according to the
following fashion; In the next section, we briefly introduce the level set method
and the free form deformation model. Our variational model to recover optical
flow estimations and perform tracking is described in section 3. The optimization
process is presented in section 4, while experimental results and discussion are
part of section 5.

2 Free Form Deformations and Implicit Level Sets

Let us consider an image:

I(x, y) = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y }
and a regular lattice of control points superimposed to this image:

Pm,n = (Px
m,n,P

y
m,n); m = 1, ...,M, n = 1, ..., N
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One can introduce a third dimension on this grid, a discrete function Φ(; ), such
that input image is approximated through a tensor product of Cubic B-spline:

I(x, y) ≈
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

with i = ( x
X ·M) − 1, j = ( y

Y ·N) − 1 and Bk(u) is the kth basis function of a
Cubic B-spline:

B0(u) = (1− u)3/6, B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6, B3(u) = u3/6

with u = x
X · M − ( x

X · M) (Bl(v) is defined in a similar fashion with v =
y
Y ·N−( y

Y ·N)). We assume that (sixteen) adjacent control points are needed to
produce the observed value at any given pixel of the image. The parameters of
this new representation consist of the position of the grid points and the value
embedded function at these points Θ = (Px

m,n,P
y
m,n,Φm,n).

Furthermore one can consider a deformation of this grid (deformation of the
image) starting from an initial configuration P, and the deforming control lattice
as

P′ = P + ΔP

that can be considered as an incremental free form deformation with the defor-
mations of the control points in both directions according to:

ΔP = {(δPx
m,n, δP

y
m,n)}; (m,n) ∈ [1,M ]× [1, N ]

The essence of FFD is to deform an object by manipulating a regular control
lattice P overlaid on its volumetric embedding space. Once a deformation has
been applied, the displacement of a pixel (x, y) given the deformation of the
control lattice from P according to ΔP, is defined in terms of a tensor product
of Cubic B-spline:

T (ΔP; (x, y)) = ((x, y)) + δT (ΔP; (x, y))

=
3∑

k=0

3∑
l=0

Bk(u)Bl(v)(Pi+k,j+l + δPi+k,j+l)

Such deformation field T (ΔP;x, y) [21] is a popular approach in graphics, ani-
mation and rendering [22]. Opposite to optical flow techniques, FFD techniques
support smoothness constraints, exhibit robustness to noise and are suitable for
modelling large and small non-rigid deformations. Furthermore, under certain
conditions, it can support a dense registration paradigm that is continuous and
guarantees a one-to-one mapping.

The level set method [11] consists of representing and evolving an evolving
interface ∂R(p) with the zero-level set of an embedding surface Φ. Such rep-
resentation can lead to a natural handling of changing the topology of ∂R(p).
Numerical simulations on Φ may be developed trivially and intrinsic geometric
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properties of the evolving interface can be estimated directly from the level set
function.

Let φ : Ω →R+ be a Lipschitz function that refers to a level set representa-
tion:

φ(p; t) =

0 , p ∈ ∂R(t)

+D((p), ∂R(t)) > 0 , p ∈ R(t)

−D((p), ∂R(t)) < 0 , p ∈ [Ω − R(t)]

(1)

where Ω is the image domain (bounded) and D(p, ∂R(t)) is the minimum Euclid-
ean distance between the pixel p and the interface ∂R(t). Then, the level set
formulation can be considered as an optimization framework. To this end, one
can define the approximations of Dirac and Heaviside distributions [23,24]:

δa(φ) =
{

0, |φ| > α
1
2α

1 + cos πφ
a

, |φ| < α

Hα(φ) =

⎧⎪⎨⎪⎩
1, φ > α
0, φ < −α
1
2

(
1 + φ

α + 1
π sin

(
πφ
a

))
, |φ| < α

(2)

These functions can be used to define contour-based as well as region-based
energetic modules for the evolving interface in the level set space [23]:

(i)
Ω

Hα(φ(p))r1(I(p))dxdy

regional module

, (ii)
Ω

δα(φ(p))b(I(p))|∇φ(p)|dxdy

boundary module

where r and b are region and boundary positive monotonically decreasing data-
driven functions. The first term [i] is a grouping component that accounts for
some regional properties (modulo the definition of r) of the area defined by the
evolving interface. The second term [ii] is a combination of a boundary attraction
term (modulo the definition of b) and a smoothness component [25,26].

Within the selected representation, one can consider a function Φ defined at
the lattice P to be a level set function, if

φ(x, y) =
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

and

φ(x, y) =

⎧⎪⎨⎪⎩
0 , p ∈ ∂R(t)

+D((p), ∂R(t)) > 0 , p ∈ R(t)
−D((p), ∂R(t)) < 0 , p ∈ [Ω −R(t)]

One now can use such a formulation to encode motion estimation and tracking.
Motion is represented with the deformation of the original lattice P while track-
ing will be addressed through the evolution of a ”level set function” Φ defined
on the same lattice.
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3 Optical Flow Estimation

Optical flow estimation is equivalent with recovering a pixel-wise deformation
field T (ΔP;x, y) that creates visual correspondences between two consecutive
images f and g. Optical flow estimation within FFD is now equivalent with
finding the best lattice P configuration such that the overlaid structures (images)
coincide. One can consider the Sum of Squared Differences (SSD) as the data-
driven term to recover the deformation field T (Θ;x);

Edata(Θ) =
∫∫

Ω

(
f(x)− g(T (ΔP;x, y))

)2
dxdy

Such an error norm is very sensitive to occlusions as well as to outliers and
therefore it can be replaced with a robust estimator, or like an an M-estimator.
Such a method assigns weights to the constraints at the pixel level that are
disproportional to their residual error therefore rejecting the motion outliers.
to this end, one should define the influence function, ψ(x) like for example the
Tukey’s estimator:

ρ(x) =
{

x(Kσ − x) if |x| < Kσ

0 otherwise

where Kσ characterizes the shape of the robust function and is updated at each
iteration leading to the following cost function:

Edata(ΔP) =
∫∫

Ω

ρ(r) dxdy =
∫∫

Ω

ρ(f(x)− g(T (ΔP;x, y))) dxdy

While such a model can be quite efficient it still suffers from the aperture prob-
lem. One can consider additional constraints to the constant brightness assump-
tion like the gradient preservation assumption, recently introduced in [27] leading
to the following cost function;

Edata(ΔP) = α
Ω

ρ f(x) − g(T (ΔP; x, y)) dxdy

+β
Ω

ρ ∇f − ∇g(T (ΔP; x, y)) dxdy

a constraint that improves the estimation of the optical flow on the object bound-
aries where the visual constancy assumption is often violated.

The use of thin plate splines to represent motion introduces in an implicit
form some smoothness constraint that can deal with a limited level of deforma-
tion. In order to account for outliers and noise, one can replace the error-two
norm with more appropriate robust metrics [5]. In order to further preserve the
regularity of the recovered motion flow, one can consider an additional smooth-
ness term on the deformation field δP. We consider a computationally efficient
smoothness term:

Esmooth(ΔP) =
∫∫ (

|Tx(ΔP;x, y)|2 + |Ty(ΔP;x, y)|2
)

dxdy
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(a) (b) (c) (d) (e) (f)

Fig. 1. Binary case with a global one pixel movement to the left : (a) first frame f ,
(b) second frame g, (c) deformed FFD grid, (d) Zoom on deformed grid, (e) Zoom on
deformed grid overlaid to first image (h)Zoom on grid’s flow overlaid to second image

Such smoothness term is based on a classic error norm that has certain known
limitations. Within the proposed framework, an implicit smoothness constraint
is also imposed by the Spline FFD. Therefore there is not need for introducing
complex and computationally expensive regularization components.

Then the global deviations from the data-driven term and the smoothness
constraints term can now be integrated to define an objective function that upon
optimization will provide a smooth motion field that establishes correspondences
between the two images:

Eflow(ΔP) = α
Ω

ρ f(x) − g(T (ΔP; x, y)) dxdy

+β
Ω

ρ ∇f − ∇g(T (ΔP; x, y)) dxdy

+γ |Tx(ΔP; x, y)|2 + |Ty(ΔP; x, y)|2 dxdy

Multilevel Incremental Free-Form Deformation (MIFFD): A straight-
forward application of the FFD manipulation cannot always guarantee the suc-
cessful motion estimation between the two images. One reason for this is that
we limit the maximum displacement of a control point to approximately a half
of the spacing between control points in order to make the deformation function
one-to-one. The correspondences that each time can be caught are according to
what level (how coarse or fine) of the FFD’s grid has been chosen. Here, we
present the MIFFD technique that overcomes the drawbacks of the straightfor-
ward method, since it can handle both large and small non-rigid deformations.
Multiresolution control lattices are used according to a coarse-to-fine strategy.
From a coarser level of the control lattice that can deal better with large dis-
placements we proceed continuously to a finer level. At each level, we can solve
for the incremental deformation of the control lattice using the scheme presented
in the previous section. In the end, the overall dense deformation field for motion
estimation is defined by these incremental deformations from all levels.

Let P1, ...,PK denote a hierarchy of control point meshes at different reso-
lutions. Each control mesh Pk and the associated spline-based FFD defines a
transformation T k(ΔP;x, y) at each level of resolution and the total deforma-
tion δT (x, y) for a pixel (x, y) in a hierarchy of K levels is:
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Fig. 2. Multilevel Optical Flow estimation MIFFD (4 levels). From the second image
g (top - left), the reconstructed images from the estimated flow are shown, until the
first image f (last one) is approximated. Final Energy 7% of initial Energy.

Fig. 3. Curve Propagation on 006 frame of player sequence

δT (x, y) =
K∑

k=0

δT k(ΔPk;x, y)

The hierarchy of control lattices can have arbitrary number of levels, but typi-
cally 3-4 levels are sufficient to handle both large and small deformations. Such
an optimization will lead to successful estimation of the motion field but does
not address tracking.

Let us consider without loss of generality that an object is present in the
scene. The task of tracking consists of recovering the successive positions of a
planar curve γ(; ) such that the object is properly delineated in time. In order
to address this demand we consider a level set curve to represent objects.

4 Object Tracking

Tracking is performed through the consistent recovery in the temporal domain
of the zero iso-surfaces of a level set γ(ΔP) that is the projection of the FFD
implicit function according to the cubic spline formulation.

Based on region-driven model free image segmentation techniques, objects
boundaries are approached through a curve propagation technique (Figure 4).
The essence of this approach is to optimize the position and the geometric form
of the curve by measuring information along that curve, and within the regions
that compose the image partition.

To this end, one can assume without loss of generality that objects are uni-
form that is also the case for the background. In that case, given an initial
position of the curve, one can determine global region-driven robj(f) and rbg(f)
functions provide a statistical description of the inside and outside object area:
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(a) (b) (c) (d) (e) (f)

Fig. 4. Tracking result on Test Sequences: (a) Initial contour on first image f of Figure
1 sequence, (b) Curve propagation result on same image, (c) Object boundaries after
applying the transformation of MIFFD flow, (d) Initial contour on first image f of
Figure 2 sequence, (e) Curve propagation result on same image, (h)Object boundaries
after applying the transformation of MIFFD flow.

robj(f(x, y)) =
(μobj − f(x, y))2

σ2
obj

, rbg(f(x, y)) =
(μbg − f(x, y))2

σ2
bg

where μobj is the mean and σobj the covariance matrix of the object appear-
ance (similar definition for the background). In cases where the assumption of
Gaussian densities seems unrealistic one can consider a more flexible parametric
density function - gaussian mixture - to describe the visual properties of the
object and the background.

In the case of static images, one can perform object extraction through the
separation of image pixels according to their match with the expected appear-
ance properties of the object and the background. Such an optimization can be
considered on the lattice space, that is

Eobject(Φ) = α

∫∫
δ

(
Φ

(
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

))
∣∣∣∣∣∇

3∑
k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

∣∣∣∣∣ dΩ
+β

∫∫
Ω

H

(
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

)
robj(f(x, y))dΩ

+β

∫∫
Ω

[
1−H

(
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

)]
rbg(f(x, y))dΩ

where the first term imposes smoothness constraints while the second address
a background/object separation according to the expected visual properties of
the two class. One now can consider the separation of the object/background in
both frames f and g given the deformation of the grid through the FFD one can
address tracking through the minimization of
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Etracking(ΔP,Φ) = α δ Φ
3

k=0

3

l=0

BkBlΦi+k,j+l

∇
3

k=0

3

l=0

BkBlΦi+k,j+l dΩ

+β
Ω

H
3

k=0

3

l=0

BkBlΦi+k,j+l robj(f(x, y))dΩ

+β
Ω

1 − H

3

k=0

3

l=0

BkBlΦi+k,j+l rbg(f(x, y))dΩ

+β
Ω

H
3

k=0

3

l=0

BkBlΦi+k,j+l robj(g(T (ΔP; x, y)))dΩ

+β
Ω

1 − H

3

k=0

3

l=0

BkBlΦi+k,j+l rbg(g(T (ΔP; x, y)))dΩ

where α, β are constant coefficients and the assumption that the ob-
ject/background properties do not change from one frame to the next. One can
relax this constraint through the estimation of visual descriptors in both frames.

Such a tracking term can be integrated with the optical flow estimation term
to simultaneously address dense optical flow estimation and object tracking.

E(ΔP,Φ) = Eflow(ΔP) + Etracking(ΔP,Φ)

The lowest potential of this cost function will provide visual correspondences
between the two images, and recover optimal successive positions of objects in
time [Figure 5 and 6].

5 Implementation

The calculus of variations and a gradient descent method can be used to optimize
such an objective function. A minimizer must fulfill the Euler-Lagrange equation
both in the deformation space [ΔP] as well as in the implicit space [Φ];

∂

∂ΔP
E(ΔP,Φ) = 0,

∂

∂Φ
E(ΔP,Φ) = 0

One can further develop these conditions using the chain rule;

∂

∂ΔP
E(ΔP,Φ) =

∂Eflow(ΔP)
∂ΔP

+
∂Etracking(ΔP,Φ)

∂ΔP

while in the case of the implicit FFD level set the flow consists only one term;

∂

∂Φ
E(ΔP,Φ) =

∂Etracking(ΔP,Φ)
∂Φ
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a) b) c) d)

d) f) g) h)

Fig. 5. Player Sequence Recovery (frames R006 -R007): (a) first image f (R006), (b)
second image g (R007), (c) Object boundaries on f image from Level Set propagation,
(d) Object boundaries on g image after applying the transformation of MIFFD flow,
(e) Deformed Grid, (f) Deformed Grid’s Flow, (g) Zoom on deformed grid, (h) Zoom
on deformed grid’s flow

a) b) c) d)

d) f) g) h)

Fig. 6. Player Sequence: Recovered Frames R007-R008 and R009-R010: (a) frame
R007, (b) frame R008, (c) Object boundaries from previous recovered frames (Fig-
ure 5), (d) Object boundaries after applying the transformation of MIFFD flow, (e)
frame R009, (f) frame R010, (g) Object boundaries from Level Set propagation, (h)
Object boundaries after applying the transformation of MIFFD flow

In practice, the proposed framework works in the following fashion. Given an
initial contour, the implicit level function is estimated in the lattice space. Then,
in parallel one updates the motion parameters of the process as well as deforming
the contour. To this end, an adaptive estimation of the regional descriptors is con-
sidered as well as frequent re-initializations of the lattice implicit function. Upon
a steady state solution, the lattice deformations as well as the object positions are
recovered in successive frames. Such positions are used to initialize the process
in the next couple of frames and the process is repeated until convergence.

6 Discussion

In this paper we have presented a novel algorithm to optical flow estimation
and tracking. Our approach introduces the concept of joint motion estimation
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and tracking in superimposed spaces of higher order polynomials like thin plane
spline level set. The selected representation of motion guarantees one-to-one
correspondences, smoothness on the deformation field and is of low complex-
ity. Parallel to that we address tracking through the recovery of explicit cor-
respondences between the object temporal positions in the level set space that
is implicit, intrinsic and parameter free. Promising results, as shown in Figure
5 and 6, demonstrate the potentials of the proposed formulation that address
in a simultaneous fashion dense optical flow estimation and non-rigid tracking.
Classical optical flow test sequences like the Yosemite sequence can not be used
for validation because there exist not an apparent object for tracking.

One can consider numerous extensions of the method. The use of FFD that
also encode the structure of the image is a prominent one. The grid that was
considered to represent motion has a fixed topology and the motion of each
image pixel is reproduced using the same number of neighboring elements that
are distributed according to the same topology. One can consider modifying the
grid dependencies and connections according to the image structure. In terms
of tracking, the case of multiple objects is to be addressed. Within the proposed
framework one can consider the one-to-one constraint on the correspondences
and preserve topology or relax such a constraint to address topological changes
from one image to the next. Such a perspective is to be investigated. Last, but
not least the use of a 3D deformation grid can be considered to account for
motion decomposition in layers.
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Abstract. In this paper we propose a surface reconstruction method for
highly noisy and non-uniform data based on minimal surface model and
tensor voting method. To deal with ill-posedness, noise and/or other
uncertainties in the data we processes the raw data first using tensor
voting before we do surface reconstruction. The tensor voting procedure
allows more global and robust communications among the data to ex-
tract coherent geometric features and saliency independent of the surface
reconstruction. These extracted information will be used to preprocess
the data and to guide the final surface reconstruction. Numerically the
level set method is used for surface reconstruction. Our method can han-
dle complicated topology as well as highly noisy and/or non-uniform
data set. Moreover, improvements of efficiency in implementing the ten-
sor voting method are also proposed. We demonstrate the ability of our
method using synthetic and real data.

1 Introduction

Surface reconstruction is to retrieve the original surface from the partial informa-
tion of that surface. The partial information can include points, pieces of curves
and surfaces. In our paper, we mainly consider reconstruction from unorganized
point clouds. Surface reconstruction is an important task in many applications
such as computer vision, computer graphics, medical imaging, computer aided
design and scientific computing.

The main difficulties of surface reconstruction from point clouds include un-
known connection or ordering information among the data points, unknown
topology of the original surface, and noise and/or non-uniformity in the data.
Based on different representations of reconstructed surfaces, most previous re-
construction approaches can be classified as parametric or non-parametric (im-
plicit surfaces). One parametric approach is NURBS (Non-Uniform Rational
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B-Spline) [1] in which the reconstructed surface is smooth, and the data set can
be non-uniform. However, this method require a nice parameterization of the
surface and possible patching of different pieces for the reconstruction, which
can be difficult for an arbitrary data set. Also, it is difficult to treat noisy data.
Another popular computational geometry algorithm is based on Delaunay trian-
gulations and Voronoi diagrams to construct triangulated surfaces [2, 3, 4, 5, 6].
For this kind of method, it is challenging to find the right connections among
all data points in three and higher dimensions, especially for noisy and highly
non-uniform data. Implicit surface methods try to find an implicit function such
that a particular level set of this function fits the data best and is extracted as
the reconstructed surface [7, 8, 9, 10, 11, 12, 13, 14, 15]. Implicit methods usu-
ally have topological flexibility, a simple data structure and depth/volumetric
information. However it is a challenge to deal with open surfaces.

To deal with noisy data a variational formulation is usually used and is
composed of both a fitting term for the data and a regularization term for
the reconstructed surface. There are two issues for this approach: (1) all data
points, even outliers, are treated equally and can affect the final reconstruction;
(2) there is a lack of effective communications among all data points and the
balance of the fitting term and the regularization term is usually local during
the reconstruction/evolution which can cause the evolving surface trapped into
local minimum easily. For highly noisy data, these approaches will likely to fail.

Tensor voting method, proposed by Medioni et al. [16], is a nice feature ex-
traction algorithm. By designing an appropriate voting procedure among all data
points a tensor field and an associated saliency field can be constructed. Coherent
geometric information can be extracted from the tensor field and the saliency
field. However, using tensor voting method alone is difficult to reconstruct a
smooth and well-represented surface.

In this paper, we propose a surface reconstruction method combining the
minimal surface model [17, 18] and the tensor voting method for highly noisy
and/or non-uniform data. We use tensor voting method to preprocess the noisy
data as well as to provide coherent information for the minimal surface model.
We show that our model can handle significant noise in the data.

2 New Surface Reconstruction Model

2.1 Minimal Surface Model

In [13] the following weighted minimal surface model is proposed: let S denote
the data set which can include points, pieces of curves and surfaces. Define

d(x) = dist(x,S) (1)

to be the distance function to S. Then define the surface energy functional as:

E(Γ ) =
[∫

Γ

dp(x)ds
]1/p

. (2)
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Here Γ is an arbitrary surface and ds is the surface area. Thinking of d(x) as
a potential function for S, this energy is the Lp norm of potential on Γ . The
purpose is to try to find a local minimizer of the energy functional that behaves
like a minimal surface or an elastic membrane attached to the data set.

Level set method [19] is used to evolve an initial guess to the steady state.
Define the corresponding level set function to be φ(x, t). The energy functional
can be reformulated as:

E(φ) =
[∫

dp(x)δ(φ(x))|∇φ(x)|dx
]1/p

, (3)

where the integration domain can be any open set (e.g., the computation domain)
that contains the zero level set of φ.

The gradient flow for the level set function φ(x, t) ([13, 20]) is:

∂φ

∂t
=|∇φ|

[∫
dp(x)δ(φ)|∇φ|dx

]1/p−1

×dp−1(x)
[
∇d(x)· ∇φ

|∇φ|+
1
p
d(x)∇· ∇φ

|∇φ|

]
. (4)

By neglecting a scaling factor we can simplify (4) as:

∂φ

∂t
= |∇φ|

[
∇d(x)· ∇φ

|∇φ| +
1
p
d(x)∇· ∇φ

|∇φ|

]
. (5)

The term ∇d(x) · ∇φ
|∇φ| corresponds to the attraction by the distance field and

the term d(x)∇ · ∇φ
|∇φ| corresponds to a minimal surface regularization weighted

by the distance function, where ∇ · ∇φ
|∇φ| is the mean curvature of the surface.

The parameter 1/p balance the potential force and surface tension. Since the
nonlinear regularization due to surface tension has a desirable scaling d(x), the
membrane is more flexible close to the data and is more rigid away from the
data. Fast implementations were discussed in [14]. The minimal surface model
can handle complicated topologies and construct a surface that is smoother than
triangulated surface in three dimensions. It can deal with noisy and non-uniform
data to some extent by balancing the attraction of the data (fitting) and the
surface area regularization. However, the minimal surface model can not deal
with highly noisy data because (1) The distance field is the distance to all data
set. If there are many outliers, the evolution surface will be attracted by all these
points and get stuck. (2) There is a lack of global communications or denoising
for the noisy data set. The surface regularization (the curvature) term is very
local and is only related to the evolution surface not to the data set.

2.2 Tensor Voting Method

Tensor voting method [16] allows more effective and robust communications
among the data to extract coherent geometric features and saliency. A second
order symmetric tensor is used to store geometric information, orientation in-
formation and saliency. The tensor can be visualized as an ellipse in 2D, and an
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ellipsoid in 3D. The shape of the tensor defines the geometric information (point,
curve, or surface element), and its size represents the saliency. In 3D, a surface
is represented by a tensor in the shape of an elongated ellipsoid (stick tensor)
with its major axis along the surface normal. A curve is represented by a tensor
in the shape of a flat ellipsoid (plate tensor) that is perpendicular to the curve’s
tangent. An isolated point has no orientation preference and is represented by
a tensor in the shape of a spherical ellipsoid (ball tensor). The tensor field is
generated by a voting procedure.

We give a brief review of the basic idea behind tensor voting in 2D. Suppose
there exists a smooth curve connecting the origin O and a point P and suppose
that the normal to the curve at O is known. Then what is the most likely
normal direction at P? Fig. 1 illustrates the situation. It can be argued [16]
that the osculating circle connecting O and P is the most likely connection since
it keeps the curvature constant along the hypothesized circular arc. So the most
likely normal is given by the normal to the circular arc at P (thick black arrow
in Fig. 1). This normal at P is oriented such that its inner product with the
normal at O is nonnegative. The length of this normal, which represents the
voting strength, is inversely proportional to the arc length s and curvature k. So
the decay function of vote strength is defined as:

DF (s, κ, σ) = e−
s2+cκ2

σ2 , (6)

where σ controls smoothness, which also determines the effective neighborhood
size [21]. c is a constant which controls the decay with high curvature, and about
its value we refer readers to [22]. We here set c = 3.57. If we vote for all locations
of P , we get a 2D stick voting field from O.

s = lθ
sin θ

κ = 2 sin θ
l

l
2 sin θ

2θ

θ

l

s

vote directionP

C

O

Fig. 1. Voting between two points

We denote the stick vote at P receiving from O as [vx vy]T . Other points cast
votes to P as well. So at P we can get a symmetric positive tensor by summing
all votes received:

S =
[ ∑

v2
x

∑
vxvy∑

vyvx

∑
v2

y

]
. (7)

Let the two eigenvalues of S be λ1 ≥ λ2 ≥ 0 and two corresponding eigen-
vectors be ê1 and ê2. S can be rewritten as
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S = (λ1 − λ2)ê1ê
T
1 + λ2(ê1ê

T
1 + ê2ê

T
2 ) . (8)

ê1ê
T
1 is called a 2D stick tensor ê1ê

T
1 + ê2ê

T
2 is called a 2D ball tensor. The stick

saliency field λ1 − λ2 indicates the saliency of curve. The larger the difference
the more likely P is on a curve whose normal is ê1. Here we give an example
of stick saliency field in 2D for eight points from a circle in Fig. 2. The saliency
field gives a good indication of the circle.
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Fig. 2. The stick saliency field for eight points from a circle

If the input is discrete points, each point has a ball tensor initially. A tensor
field is generated by a tensor voting procedure. For every pair of points, for
example O voting on P in the previous example, since no direction information
is available initially, a discrete set of uniformly distributed directions are used
as possible normals at O and vote on P with the weight function in (6). By
summing votes from all directions at all other points we can get a tensor at each
data point and we can further generate a tensor field.

In 3D a tensor field can be decomposed as

S = (λ1 − λ2)ê1ê
T
1 + (λ2 − λ3)(ê1ê

T
1 + ê2ê

T
2 ) + λ3(ê1ê

T
1 + ê2ê

T
2 + ê3ê

T
3 ) , (9)

where ê1ê
T
1 is a 3D stick tensor, ê1ê

T
1 + ê2ê

T
2 is a 3D plate tensor, ê1ê

T
1 + ê2ê

T
2 +

ê3ê
T
3 is a 3D ball tensor. The stick saliency field λ1−λ2 represents the saliency of

surface with normal ê1, the field of λ2−λ3 represents the saliency of curve with
tangent direction orthogonal to both ê1 and ê2, and λ3 represents the saliency
of junction or isolated point. We denote the stick saliency field λ1 − λ2 as s(x)
which will play an important role in our new model.

In summary, we use the following tensor voting procedure for our data points:

1. Tensor calculus. Generate the initial stick tensor information at every origi-
nal data point.

2. Voting process. Every data point propagates its tensor information to neigh-
boring grid points and generate a tensor field in the computation domain.

3. Feature extraction. Extract the geometric features and saliency field at each
grid point.
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Although tensor voting method can reveal coherent geometric features and
saliency for data points, to use the method directly for surface reconstruction has
the following disadvantages: (1) The tensor information is not very accurate or
sharp, especially in the case of complicated topology and/or geometry. Surface
regularization after reconstruction is needed [23]. (2) To extract the surface from
the saliency field directly the algorithm is quite complex, and need to tune
parameters of threshold empirically [16, 23].

2.3 Our New Model

The above discussions show that the stick saliency field from tensor voting among
all data points contains more global and robust information for our surface re-
construction. The strength of the saliency field gives a good likelihood indication
of surface at each point. Therefore we incorporate the stick saliency field and
combine it with the distance field for surface reconstruction. Let

k(x) = 1− s(x)
M

, M = max{s(x)} (10)

be the normalized stick saliency field. Then we define our new evolution as:

∂φ

∂t
= α∇d(x) · ∇φ + β∇k(x) · ∇φ + γd(x)|∇φ|∇ · ∇φ

|∇φ| . (11)

The term ∇d(x) · ∇φ corresponds to the attraction of the data set through the
distance field. The term ∇k(x) · ∇φ corresponds to attraction of saliency field.
These two terms advect the surface closer to the data set as well as to high
saliency region. The term d(x)|∇φ|∇ · ∇φ

|∇φ| corresponds to a weighted surface
tension which regularizes the reconstructed surface. Tuning the parameters α, β
can balance the effect of two fields, and the value of γ affect the smoothness of
the reconstructed surface. For highly non-uniform data, the saliency field can
provide more useful information than the distance field.

For highly noisy data sets, we first use tensor voting to remove outliers, i.e.,
those points that are not likely on the surface. After we get the normalized stick
saliency field we remove those points whose saliency value is smaller than a
threshold. This procedure can be repeated if necessary. This preprocessing step
allows us to clean up the data substantially even for very noisy data, which will
be shown later by examples. After this step we redo the tensor voting procedure
for the remaining data set and generate a new tensor and saliency field. Then
we use the above model for surface reconstruction.

We do not advocate of only using saliency field to propagate the surface.
In some situations with simple topological structure and surface details, we can
solely use saliency field, e.g., Fig. 5(c). However, the global tensor voting process
usually results in a quite smeared saliency field, i.e., the gradient of the saliency
field is not sharp, especially if the data set is sparse or has noise or complicated
topological or geometric structures. Moreover, this makes the evolution slow
too.
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3 Numerical Implementation

3.1 The Level Set Method for Surface Evolution

Since we do not know a priori the topology of the final surface, we use level
set method for surface evolution according to (11). This equation is of the same
type of the minimal surface model used in [17]. The two convection terms∇k(x)·
∇φ(x) and ∇k(x) · ∇φ(x) are treated in the same way. We refer readers to [17]
for implementation details. Here is our implementation procedure:

1. If the original data is noisy, we first use tensor voting method to remove
outliers in the data set.

2. Get distance function d(x) and normalized saliency field k(x).
3. Start with an initial guess of Γ and evolve it to steady state using (11).

The distance field is computed using the fast sweeping method which is of
O(N + M) complexity, where N is the number of grid point and M is the
number of data point [13, 17]. Local level set method [24] is used to cut down
the computation cost.

To further accelerate the computation, we can neglect the curvature term
and just use the two convection terms initially to evolve the surface as suggested
in [18]. This allows us to remove more strict CFL condition due to the curvature
term. When the evolution is near steady state, we can put in the curvature term
to make the final surface smoother.

3.2 Some Improvements in Implementing the Tensor Voting
Method

Generating the Initial Stick Tensor. In Sect. 2.2, we give out the origi-
nal method of generating the initial stick tensor. However using stick tensor to
simulate ball tensor or plate tensor is time-consuming and is not very accurate.

We consider the communication of two data points P, Q in Fig. 3. Without
any prior information, the most likely relationship of these two points is that
they are on the straight line connecting them. So they give each other a plate
tensor. Let êPQ = (tx, ty, tz) be the unit vector pointing from P to Q. Taking
into account the decay with the increasing distance, we define the plate tensor as:

e
l2

σ2 (I − êPQêT
PQ) = e

l2

σ2 ·

⎡⎣1− t2x −txty −txtz
−txty 1− t2y −tytz
−txtz −tytz 1− t2z

⎤⎦ , (12)

where l is the distance between P, Q. When l is bigger than a threshold we can
ignore their communication. For every data point, summing up the contribution
from all neighbors gives it the initial tensor.

Suppose the number of data points is N , and every point has M neighbors.
Then if we use k stick tensor to represent a ball tensor, the original method needs
O(kNM) operations and the value of k can be large to represent all directions
well. While our new algorithm needs O(NM) operations.
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P Ql

êPQ

Fig. 3. Communication between two data points

Voting Process. In the second step of tensor voting, every data point prop-
agates its tensor information to its neighboring grid points like in Fig. 1. But
every time a data point votes on a grid point, we need to compute the weight
DF (s, κ, σ). It is a time-consuming process. In fact, to reduce the computation
cost, we can first establish an index table of the weight function, then when we
need to compute the contribution from a point to another point we can refer to
the table which significantly speed up the computation. Moreover, the higher res-
olution the index table has, the better we approximate the true weight function.
In our implementation, we use an index table whose resolution is three times
of that of our computation grids. As showed in Fig. 4, suppose we know the
coordinates of point P, Q, and know the unit stick vector êP at P , we look up
the index table to get the value of DF (s, κ, σ). We demonstrate this in 2D. First,
we can determine the unit stick vector êQ at Q voted from P by the formula:

êQ = êP − 2
−−→
QP

‖ −−→QP ‖

(−−→
QP · êP

‖ −−→QP ‖

)
. (13)

Then we find the corresponding weight from the index table by lx and ly.
Times this weight with the stick saliency value at P gives the stick saliency value
at Q voted from P . Here,

lx =‖ −−→QP ‖
√

1− c2, ly =‖ −−→QP ‖ |c|, c =
−−→
QP · êP

‖ −−→QP ‖
. (14)

The establishment of the index table is relatively simple, we only need to
store the contributions from a unit stick tensor to its neighboring points.

Tune the Range of θ. In the original tensor voting method, a point vote on
another point only if θ ≤ π/4 (see Fig. 1). However, for our surface reconstruction
purpose it seems that two nearby points on a smooth surface (relative to the
grid size) are not likely to form a large angle. In our experiments for real data,
we get better results if we restrict θ in a smaller interval. In our experiments,
we set θ ≤ π/12. In the following, we use θ = ψ to mean the range of θ is [0, ψ].

4 Experimental Results

In this section we present experimental results for our method. All results are
displayed using OpenDX.
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Fig. 4. Use the index table instead of computing DF (s, κ, σ)

(a) 100 random points
on a ball

(b) Reconstruction
using minimal sur-
face model. α = 1,
β = 0, γ = 0.5

(c) Reconstruction
only using stick
saliency field. α = 0,

β = 10, γ = 0.5

(d) Reconstruction
using the new mo
del. α =1, β = 10,
γ = 0.5

Fig. 5. Surface reconstruction from non-uniform data

(a) Two tori data with 500%
noise

(b) Removing outliers for
(a). The threshold is 0.5

(c) Reconstructed surface
from (b). α = 1, β = 5, γ =
0.05

(d) Two tori data with
1000% noise

(e) Removing outliers for
(d). The threshold is 0.5

(f) Reconstructed surface
from (e). α=1, β=11, γ=
0.05

Fig. 6. Surface reconstruction from noisy two tori data. σ = 3, θ = π/18.

-
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(a) Bunny data with 500%
noise

(b) Removing outliers for
(a). The threshold is 0.5.

(c) Reconstructed result
from (b). α = 1, β = 2,
γ= 0.

(d) Bunny data with 1200%
noise

(e) Removing outliers for
(d). The threshold is 0.6.

(f) Reconstructed result
from (e). α = 1, β = 2,
γ = 0.

Fig. 7. Surface reconstruction from noisy bunny data. σ = 3, θ = π/18.

Table 1. Experimental data

2 tori bunny
Reconstructed result Fig. 6(c) Fig. 6(f) Fig. 7(c) Fig. 7(f)

Noisy ratio 500% 1000% 500% 1200%
Total points 7200 13200 215682 467311

Points after removing noise 1601 2413 62807 119232
Time for tensor voting at twice 8.11s 14.313s 1606.015s 6514.141s

Evolution time 87.516s 119.5s 57.875s 132.875s

The computations are carried out on a CPU of AMD Athlon XP 3200+
and 1GB memory. All the reconstructions are on a 61 × 61 × 61 grid. We use
both synthetic and real data to show the ability of handling highly noisy and
non-uniform data.

In Fig. 5 we show the case of non-uniform data. The data set is 100 random
points on a sphere. We can see from the result that the reconstructed surface
(d) using our new model is better than (b) reconstructed from minimal surface
model or (c) which only uses stick saliency field for reconstruction.

In Fig. 6, Fig. 7, we demonstrate the ability of dealing with highly noisy
data for the new model. We add points randomly in the box that contain the
original data. The noise ratio is the ratio between the number of added points
and the number of original data points. The original data sets for the two tori
and the bunny have 1200 and 35947 points respectively. Some experimental data
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are displayed in Table 1 from which we can see that when the number of data
points is large, the most expensive step is tensor voting.
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Abstract. Converting point samples and/or triangular meshes to a more compact
spline representation for arbitrarily topology is both desirable and necessary for
computer vision and computer graphics. This paper presents a C1 manifold in-
terpolatory spline that can exactly pass through all the vertices and interpolate
their normals for data input of complicated topological type. Starting from the
Powell-Sabin spline as a building block, we integrate the concepts of global para-
metrization, affine atlas, and splines defined over local, open domains to arrive
at an elegant, easy-to-use spline solution for complicated datasets. The proposed
global spline scheme enables the rapid surface reconstruction and facilitates the
shape editing and analysis functionality.

1 Introduction

Constructing smooth interpolatory spline surfaces from any data input in 3D is fre-
quently needed in visual computing. Given a scattered point cloud, {Pi = (xi,yi,zi)}m

i=1,
and associated normal vectors {ni = (nxi,nyi,nzi)}m

i=1, the goal of this paper is to find
a smooth surface F that interpolates both the vertex positions and their normals simul-
taneously of complicated topological type.

Unlike most of the conventional methods which typically trim parametric spline
surfaces defined over open planar domains, stitch them along their trimmed bound-
aries with care, and enforce the smoothness requirements of certain degree across their
common boundaries, our spline scheme is global and interpolatory. It can faithfully re-
construct smooth shapes of any manifold from geometric input without resorting to any
patching and/or trimming operations. The technical core of our new approach is the
Powell-Sabin spline defined over any open, triangulated domain. The primary goal is
the exact interpolation (for both vertices and their normals), therefore, the Powell-Sabin
spline scheme is an ideal candidate for this requirement. Nonetheless, the technical
challenge is how to generalize the Powell-Sabin spline defined over planar, triangulated
domains to a global spline spanning over domain of complicated topology without any
cutting and patching work. We accomplish this mission through the following steps: (1)
The initial, raw data input is globally parameterized in order to map the 3D geometry
onto a 2D domain; (2) For any 3D point, we are only interested in a certain localized
2D region in its vicinity; (3) We decompose the entire 3D geometry into a suite of over-
lapping regions and construct their corresponding affine atlases on 2D; (4) These affine

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 295–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(a) (b) (c) (d)

Fig. 1. Globally interpolatatory spline: (a) A genus-6 Buddha model with 25K vertices; (b) Global
conformal parameterization; (c) A global C1 spline surface which interpolates all the vertices and
their normals of (a); (d) Close-up view: top, original mesh; middle, spline surface; bottom, spline
surface with the red curves corresponding to the edges in the mesh

charts in 2D constitute all the local parametric domain for defining all the open Powell-
Sabin spline surfaces that interpolate only a subset of data points; (5) These locally
defined spline surfaces span across their neighbors and share some common regions;
and finally (6) We build a globally interpolatory spline by collecting all the control
points and using all the affine atlases as their global domain.

2 Previous Work

2.1 Planar Powell-Sabin Spline

Powell-Sabin splines are functions in the space S1
2(Δps) of C1 continuous piecewise

quadratic functions on a Powell-Sabin refinement [1]. Such a refinement Δps can be ob-
tained from an arbitrary triangulation Δ by splitting each triangle into six subtriangles
with a common interior point. In contrast to triangular Bézier splines, where imposing
smoothness conditions between the patches requires a great number of nontrivial re-
lations between the control points to be satisfied, the C1 continuity of a Powell-Sabin
spline is guaranteed for any choice of the control points.

The first B-spline representation of Powell-Sabin spline was derived by Shi et al. [2].
However, their construction approach had serious drawbacks from the numerical point
of view. Dierckx [3] resolved the numerical problem by constructing a normalized B-
spline basis for Powell-Sabin splines. This representation has a very nice geometric
interpretation involving the tangent control triangles for manipulating the Powell-Sabin
surfaces. Since then, the normalized Powell-Sabin spline has been receiving much at-
tention in the computer aided geometric design community. Surface approximation and



A C1 Globally Interpolatory Spline of Arbitrary Topology 297

interpolation using Powell-Sabin spline have been reported in [4,5,6]. Windmolders
and Dierckx solved the subdivision problem for uniform Powell-Sabin splines, that is
on triangulations with all equilateral triangles [7]. Recently, Vanraes et al. present the
subdivision rule for general Powell-Sabin spline [8].

2.2 Interpolatory Spline

Interpolation is a very useful and intuitive feature in computer aided geometric design.
Two different research directions have been pursued. One is based on the subdivision
surfaces that recursively subdivide the control mesh, such as the butterfly scheme [9]
or modified butterfly scheme [10]. The other direction consists of building a patch of
smoothly joined parametric patches. This paper focuses on the spline based interpola-
tion scheme. There exists a vast literature on interpolation by splines over triangulations
(see the survey [11] and the references therein). In the interest of the space, we only cite
few of them which are closely related to our work.

Hahmann and Bonneau [12] presented a piecewise quintic G1 spline surface inter-
polating the vertices of a triangular surface mesh of arbitrary topological type. They fur-
ther improved the method without imposing any constraint on the first derivatives and
thus avoid any unwanted undulations when interpolating irregular triangulations [13].
Nürnberger and Zeilfelder presented [14] a local Lagrange interpolation scheme for
C1-splines of degree q ≥ 3 on arbitrary triangulations. This interpolating spline yields
optimal approximation order and can be computed with linear complexity.

2.3 Manifold Construction

There are some related work on defining functions over manifold. Grimm and Hugues
[15] pioneered a generic method to extend B-splines to surfaces of arbitrary topology,
based on the concept of overlapping charts. Cotrina et al. proposed a Ck construction on
manifold [16,17]. Ying and Zorin [18] presented a manifold-based smooth surface con-
struction method which has C∞-continuous with explicit nonsingular parameterizations.
Recently, Gu, He and Qin [19] developed a general theoretical framework of manifold
splines in which spline surfaces defined over planar domains can be systematically gen-
eralized to any manifold domain of arbitrary topology (with or without boundaries).
Manifold spline is completely different from the above methods in that: 1) The transi-
tion functions of manifold spline must be affine. Therefore, the requirements of mani-
fold spline is much stronger. That is why topological obstruction plays an important role
in the construction. 2) Manifold spline produces the polynomial or rational polynomi-
als. On any chart, the basis functions are always polynomials or rational polynomials,
and represented as B-splines or rational B-splines.

In [19], Gu et al. defined the manifold spline based on triangular B-spline [20]. This
construction requires a complicated data fitting procedure when converting points to
splines. Inspired by [19], we strive to devise a globally interpolatory splines that are
founded upon the original work of [3]. Our method is different from the above methods
in that: 1) All the existing developments of Powell-Sabin splines are defined on the
planar domain; 2) The existing global interpolatory splines need patching and stitching
work; 3) All the manifold constructions except the manifold splines do not produce
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globally polynomials or rational polynomials. Our work generalizes the planar Powell-
Sabin spline to arbitrary manifold without any patching and stitching work. Also, due to
the nice properties of the normalized Powell-Sabin spline, our method can interpolate
both positions and normals.

3 The Globally Interpolatory Spline

This section first reviews the normalized planar Powell-Sabin B-spline [3] and then
presents all the necessary components for our global spline scheme.

3.1 Powell-Sabin Spline on the Planar Domain

Let Ω be a polygonal domain in R2 and let Δ be a conforming triangulation of Ω , com-
prising triangles ρ j, j = 1, . . . ,Nt , having vertices Vi := (xi,yi),i = 1, . . . ,Nv. A Powell-
Sabin refinement, Δps of Δ is the refined triangulation, obtained by subdividing each
triangle of Δ into six sub-triangles as follows. Select an interior point Zj in each tri-
angle ρ j and connect it with the three vertices of ρ j and with the points Zj1 ,Zj2 ,Zj3
where ρ j1 ,ρ j2 ,ρ j3 are the triangles adjacent to ρ j (See Figure 2). We denote by S1

2(Δps)
the space of piecewise C1 continuous quadratic polynomials on Δps. Powell and Sabin
[1] proved that the dimension of the space S1

2(Δps) equals to 3Nv and any element of
S1

2(Δps) is uniquely determined by its value and its gradient at the vertices of Δ , i.e.,
there exists a unique solution s(x,y) ∈ S1

2(Δps) for the interpolation problem

s(Vi) = fi,
∂
∂x

s(Vi) = fx,i,
∂
∂y

s(Vi) = fy,i, i = 1, . . . ,Nv. (1)

So given the function and its derivative values at each vertex Vi, the Bézier ordinates
on the domain sub-triangles are uniquely defined and the continuity conditions between
sub-triangles are automatically enforced.

Dierckx [3] showed that each piecewise polynomial s(x,y) ∈ S1
2(Δps) has a unique

representation

s(x,y) =
Nv

∑
i=1

3

∑
j=1

ci jB
j
i (x,y), (x,y) ∈Ω (2)

V
V

Z1

Z2

S

(a) (b)

Fig. 2. The Powell-Sabin refinement Δ ∗ (b) of a triangulation Δ (a)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Powell-Sabin spline over a planar domain: (a) Domain etriangulation; (b) Spline surface;
(c) Spline surface, the red curves correspond to the edges in the domain triangulation; (d) Spline
surface overlaid by the control triangles (shown in red) which are tangent to the surface; (e) The
molecule of one vertex v; (f)-(h) Three basis functions associated with vertex v

where the basis functions form a partition of unity, i.e.,

B j
i (x,y) ≥ 0 (3)

n

∑
i=1

3

∑
j=1

B j
i (x,y) = 1 for all x,y ∈Ω (4)

Furthermore, these basis functions have local support: B j
i (x,y) vanishes outside the so-

called molecule Mi of vertex Vi, which is the union of all triangles Tk containing Vi.
The basis functions B j

i (x,y) can be obtained by finding three linearly independent
triplets (αi j,βi j,γi j), j = 1,2,3 for each vertex Vi. B j

i (x,y) is the unique solution of the
interpolation problem with ( fk, fxk, fyk) = (δkiαi j,δkiβi j,δkiγi j), where δki is the Kro-
necker delta. The triplets (αi j,βi j,γi j), j = 1,2,3 are determined by the following Dier-
ckx’s algorithm [3,21]:

1. For each vertex vi, find its Powell-Sabin triangle points, which are the immediately
surrounding Bézier domain points of the vertex vi and vertex vi itself.

2. For each vertex vi, find a triangle ti(Qi1,Qi2,Qi3) which contains all the Powell-
Sabin triangle points of vi from all the triangles in the molecule Mi. Denote Qi j =
(Xi j,Yi j) the position of vertex Qi j.

3. Three linearly independent triplets of real numbers αi j,βi j,γi j, j = 1,2,3 can be
derived from the Powell-Sabin triangle ti of a vertex vi as follows:
(αi1,αi2,αi3) = Barycentric coordinate of vi with respect to ti,
(βi1,βi2,βi3) = ((Yi2−Yi3)/h,(Yi3−Yi1)/h,(Yi1−Yi2)/h),
(γi1,γi2,γi3) = ((Xi3−Xi2)/h,(Xi1−Xi3)/h,(Xi2−Xi1)/h),

where h = det

⎛⎝ 1 1 1
Xi1 Xi2 Xi3

Yi1 Yi2 Yi3

⎞⎠.
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We then define the control triangles as Ti(Ci1,Ci2,Ci3). Dierckx proved that the
normalized Powell-Sabin spline has a very nice geometric interpretation that the control
triangle is tangent to the spline surface [3].

Figure 3 illustrates an example of Powell-Sabin spline surface over a planar triangu-
lated domain. Note that, their basis functions B j

i (u) vanish outside the molecule Mi (see
Figure 3(e-h)). Furthermore, the control points (Ci1,Ci2,Ci3) form a control triangle
which is always tangent to the spline surface at s(vi) (see Figure 3(d)).

3.2 Generalizing Powell-Sabin Spline to Arbitrary Topology

In [19], Gu et al. addressed several key technical issues of manifold splines in which
spline surfaces defined over planar domains can be systematically extended to mani-
fold domains of arbitrary topology. In a nutshell, a manifold spline can be intuitively
interpreted as a set of spline patches that are automatically glued in a coherent and
consistent way without any gap, such that all the patches collectively cover the entire
manifold. The surface evaluation can be easily conducted using the control points and
corresponding basis functions of any overlapping patches, without leading to any incon-
sistency. The followings are the necessary theoretical results which enable our global
spline scheme based on Powell-Sabin’s approach.

Theorem 1. The sufficient and necessary condition for a manifold M to admit manifold
spline is that M must be an affine manifold.

This theorem implies that the existence of manifold splines solely depends on the
existence of affine atlas. If the domain manifold M is an affine manifold, we will be able
to directly generalize the local spline patches to a global spline defined on M. Details
about the affine manifold and affine atlas can be found in the Appendix.

Theorem 2. The only closed surface admitting affine atlas is of genus one. All oriented
open 2-manifolds admit an affine atlas.

Theorem 2 points out that not all surfaces admit the affine atlas. The topological
obstruction of a global affine atlas is the Euler class. In fact, by removing one point
from the closed domain manifold, we can convert it to an affine manifold.

Theorem 3 (Affine atlas deduced from conformal structure). Given a closed genus
g surface M, and a holomorphic 1-form ω . Denote by Z = {zeros o f ω} the zero points
of ω . Then the size of Z is no more than 2g−2, and there exists an affine atlas on M/Z
deduced by ω .

Essentially, Theorem 3 indicates that an affine atlas of a manifold M can be deduced
from its conformal structure in a straightforward fashion.

3.3 Algorithmic Details

Given a triangle mesh M of arbitrary topological type, we want to find a manifold
Powell-Sabin spline which interpolates the vertices of M and their normals. Our spline
surface construction algorithm consists of two consecutive steps: (1) compute the global
conformal parameterization; and (2) construct the global spline.
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(a) (b) (c) (d)

Fig. 4. Interpolation of a genus-2 model. (a) The two-hole bottle model with 2K vertices; (b)
Global conformal parameterization; (c) Spline surface; (d) Control triangles.

Compute Global Conformal Parameterization and Affine Atlas. As mentioned
above, the domain manifold M admits a manifold spline if and only if it has affine
atlas, which can be deduced from the conformal structure of M directly. Thus, in order
to construct our global spline, we shall first compute the conformal structures of the
domain manifold M. A conformal atlas is an atlas such that all transition functions are
analytic. Two conformal atlases are compatible if their union is still a conformal atlas.
All compatible conformal atlases form conformal structure. It is known that all surfaces
have conformal structure and are called Riemann surfaces. The algorithm to compute
global conformal parameterization and affine atlas is as follows:

1. Compute the holomorphic 1-form ω of M using Gu-Yau’s algorithm [22].
2. Remove the zero points Z of ω and the adjacent faces.
3. Construct an open covering for M/Z. For each vertex Vi, take the union of all faces

within its molecule as an open set, denoted by Ui.
4. Test if the union of any two Ui’s is a topological disk by checking the Euler number.

If not, subdivide Ui.

M

s

Ui Uj
φi

φ j

φi(Ui)

φ j(Uj)

Fig. 5. Constructing local spline patches: The parametric domain M is a triangular mesh of ar-
bitrary topology as shown on the left. The polynomial spline surface s is shown on the right.
Two overlapping spline patches are magnified and highlighted in the middle. On each parameter
chart (Ui,φi), (Uj,φ j), the surface is a locally defined planar Powell-Sabin spline patch. For the
overlapping part, its two planar domains differ only by an affine transformation φi j.
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5. Pick one vertex pi ∈Ui, for any vertex p ∈Ui, define φi(p) =
∫ p

pi
ω .

6. Compute coordinate transition functions φi j =
∫ p j

pi
ω .

Global Spline Construction. Note that the evaluation of Powell-Sabin spline over any
planar region relies on the computation of Barycentric coordinates of the parameter with
respect to the domain triangles. If we change the parameter by an affine transformation,
the evaluation is invariant and the final shape of the spline surface will not be changed.
Figure 5 highlights the transition from local patches to the global spline. The algorithm
to construct the global spline is as follows:

1. Prepare the underlying parameteric domain (For any vertex Vi ∈ M, denote by
(Ui,φi) its parametric chart which contains the molecule of Vi).

2. Compute the three linear independent triplets, (αi j,βi j,γi j), j = 1,2,3. Build the
basis functions using the above Dierckx’s algorithm.

3. Assign the control points (Ci1,Ci2,Ci3) which satisfy

Vi =
3

∑
j=1

αi jCi j (5)

and
(Ci1−Ci2)× (Ci1−Ci3)

‖ (Ci1−Ci2)× (Ci1−Ci3) ‖
= ni = (nxi,nyi,nzi)T (6)

One can prove that the control triangle (Ci1,Ci2,Ci3) is tangent to the spline surface s
at Vi, i.e.,

s(φi(Vi)) = Vi (7)

su(φi(Vi))× sv(φi(Vi))
‖ su(φi(Vi))× sv(φi(Vi)) ‖

= ni (8)

The detailed proof is in the Appendix.

Variational Shape Design. In the Powell-Sabin spline scheme, each vertex of the do-
main triangulation is associated with three control points. In the above spline construc-
tion step, we require the control points satisfying Equation (5) and (6). Therefore, there
are still three degrees of freedom remaining. We can use these free variables for vari-
ational shape design. For example, we can fair the spline surface by minimizing the
following energy functional subject to the interpolation constraints:

min α
∫∫

M
(s2

u + s2
v)dudv + β

∫∫
M

(s2
uu + 2s2

uv + s2
vv)dudv (9)

subject to Vi =
3

∑
j=1

αi jCi j

〈Ci1−Ci2,ni〉= 0

〈Ci2−Ci3,ni〉= 0, for each vertex Vi ∈M,

where 〈,〉 is the inner product, u and v are parameters on the local charts. The objective
function is the standard thin-plate energy with membrane terms, which can be written
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Manipulation of manifold Powell-Sabin spline: The input is a triangular mesh M with
normal information as shown in (a). We construct a manifold Powell-Sabin spline S to interpolate
both the positions and normals of M (shown in (b)). We insert a new vertex v in the original mesh
and assign a normal to v (shown in (c)). The corresponding spline is shown in (d). We can also
change the normal but fix the positions, the spline and control triangles are shown in (e) and
(f), respectively. We can even fix the vertices positions and their normals but change the size of
the control triangles without violating the interpolation property. In (h), we enlarge the control
triangle of the top-most vertex and get a new surface shown in (g). Note that the new spline still
interpolates the positions and normals.

as a quadratic form of control points. Therefore, the above optimization problem can be
solved efficiently using the Lagrange multiplier method.

Handling the Singular Points. In [19], Gu et al. showed the manifold splines must
have singular points if the domain manifold is closed and not a torus. The number of
singular points is no more than 2g−2 for a genus g domain manifold M. The singular
points Z can be automatically detected from the conformal structure of M by checking
the winding number. Then the molecule of Z is removed from M. No spline patches are
defined on the molecule of Z. Therefore, there exist holes in the spline surface. For each
hole, we compute a minimal surface spanning the hole such that it satisfies the given
boundary condition.

3.4 Properties

The proposed globally interpolatory spline (based on Powell-Sabin spline over the pla-
nar domain) exhibits the following features:

1. Piecewise polynomial. The global spline surface is a quadratic piecewise polyno-
mial defined on the manifold M which has arbitrary triangulation. It is globally
C1-continuous and very efficient to evaluate.

2. Local support. It has local support since the basis functions B j
i (u) vanish outside

the molecule of vi.
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3. Tangent plane control/Interpolation/Local shape modification. The control triangle
(Ci0,Ci1,Ci2) is tangent to the spline surface s at Vi. Thus, by manipulating the
control triangle, the spline surface can interpolate both positions and normals. Fur-
thermore, besides interpolation of the positions and normals, the control triangle
still has three degrees of freedom which can be used for local shape modification
and variational shape design.

4. Convex hull. The polynomial surface is inside the convex hull of the control points.

5. Local adaptive refinement. Since there is no restriction on the triangulation of M,
the spline surface can be locally refined by knot insertion, e.g., inserting a new
vertex inside the existing triangle, or splitting any edge.

6. Minimal number of singular points. The number of singular points depends only
on the topology of the manifold M, i.e., no more than 2g− 2 singular points for a
genus g domain manifold.

(a) (b) (c)

Fig. 7. Example of a genus-0 open surface: (a) The face model with 4K vertices; (b) Global
conformal parameterization; (c) The globally interpolatory spline

(a) (b) (c)

Fig. 8. Example of a genus-1 surface: (a) The rockerarm model with 10K vertices; (b) Global
conformal parameterization; (c) The globally interpolatory spline
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4 Results

We have implemented a prototype system on a 3GHz Pentium IV PC with 1GB RAM.
Figure 6 illustrates the various properties of manifold Powell-Sabin spline which is
useful in computer aided geometric design. We perform experiments on several models
of various topological types, i.e., a genus-0 face (Figure 7), a genus-1 rockerarm (Fig-
ure 8), a genus-2 bottle (Figure 4), and a genus-6 Happy Buddha (Figure 1). The overall
computational procedure requires about 6∼ 30 minutes for our test models.

5 Conclusion

In this paper, our goal is to seek a global spline solution that will allow us to interpolate
all vertices and their normals using one-piece spline representation without any cutting
and stitching operations. Founded upon the Powell-Sabin spline, we have developed a
new globally interpolatory spline which is truly one-piece formulation without gener-
ating any seams when crossing triangular edges on its domain mesh. The interpolation
property is valuable for the reverse engineering task that can effectively convert point-
cloud raw data to the compact spline formulation. Our globally interpolatory spline is
also relevant to surface modeling, variational design, and interactive editing.
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Appendix: Proof of the Interpolation Property

We prove that our global spline (based on Powell-Sabin spline) interpolates the domain
manifold M and its normals, i.e., for a vertex Vi ∈M, s(φi(Vi)) = Vi and n(φi(Vi)) = ni

where φi : Ui → R2 maps the molecule of Vi to the planar domain.
The basis functions of vertices Vk have local support, i.e., they vanish outside the

molecule of φk(Vk). Therefore,

s(φi(Vi)) =
Nv

∑
i=1

3

∑
j=1

Ci jB
j
i (φi(Vi)) =

3

∑
j=1

Ci jB
j
i (φi(Vi)) =

3

∑
j=1

Ci jαi j = Vi.

The last equation results from the fact that αi j , j = 1,2,3 are also the Barycentric co-
ordinate of Vi with respect to (Ci1,Ci2,Ci3). Similarly, the normal n(φ(Vi)) can be
calculated as

n(φi(Vi)) ∝ su(φi(Vi))× sv(φi(Vi)) = (
3

∑
j=1

Ci jβi j)× (
3

∑
j=1

Ci jγi j)

= λ (Ci1×Ci2 + Ci2×Ci3 + Ci3×Ci1)
= λ (Ci1−Ci2)× (Ci1−Ci3) ∝ ni,

where λ = βi1γi2−βi2γi1 = βi3γi1−βi1γi3 = βi2γi3−βi3γi2. Therefore, the control tri-
angle (Ci1,Ci2,Ci3) is tangent to the surface s at vertex Vi.
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Abstract. In this paper, we propose a method to solve PDEs on surfaces
with arbitrary topologies by using the global conformal parametrization.
The main idea of this method is to map the surface conformally to 2D
rectangular areas and then transform the PDE on the 3D surface into a
modified PDE on the 2D parameter domain. Consequently, we can solve
the PDE on the parameter domain by using some well-known numerical
schemes on R

2. To do this, we have to define a new set of differential oper-
ators on the manifold such that they are coordinates invariant. Since the
Jacobian of the conformal mapping is simply a multiplication of the con-
formal factor, the modified PDE on the parameter domain will be very
simple and easy to solve. In our experiments, we demonstrated our idea
by solving the Navier-Stoke’s equation on the surface. We also applied
our method to some image processing problems such as segmentation,
image denoising and image inpainting on the surfaces.

1 Introduction

Image processing on the surface has become more and more important in medical
imaging, computer graphics and computer vision. Many image processing tech-
niques involve solving a partial differential equation (PDE) on the surface. In 2D
image processing, variational approaches have been widely used. The minimiza-
tion procedure can be reformulated as a partial differential equation, using the
Euler-Lagrange equation. In order to extend the 2D image processing techniques
to 3D, we therefore need to formulate a technique to solve PDEs on surfaces with
arbitrary topologies.

In this paper, we propose to solve PDEs on surfaces by using the global
conformal parametrization. The main idea is to map the surface conformally
to the 2D rectangles with the minimum number of coordinates patches. The
problem can then be solved by solving a modified PDE on the 2D parameter
domain. To do this, we have to define a new set of differential operators on the
manifold. Once a PDE on the 3D surface is reformulated to the corresponding
PDE on the 2D domain, we can solve the PDE on 2D by using some well-
known numerical schemes. Since the Jacobian of the conformal mapping is simply
a multiplication of the conformal factor, the modified PDE on the parameter
domain will be very simple and easy to solve.

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 307–319, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Recently, some level set based PDE solving approaches have been proposed
([5,6]). Compared with the level set based approaches, we explicitly describe the
manifold by the conformal parametrization, instead of the implicit representa-
tion of the level set function. We use a new set of differential operators on the
manifold, without doing a projection of the Euclidean differential operators. Our
method considers maps which are defined only on the manifold so we do not need
to extend maps to a narrow band of the surface.

2 Previous Work

Several research groups have reported works on solving PDEs on the surface.
Turk [1] proposed to generate textures on arbitrary surfaces using reaction-
diffusion, which require to solve PDE on the surface. Dorsey et al. [2] propose
to solve PDEs on the surface for virtual weathering. Both of them solved the
PDE directly on the triangulated surface, which involve the discretization of the
equations in general polygonal grid. Stam [3] proposed to simulate fluid flow on
the surface via solving the Navier-Stokes equation. He achieved this by combin-
ing the two dimensional stable fluid solver with an atlas of parametrizations of
a Catmull-Clark surface. Clarenz et al. [4] has proposed an algorithm for solv-
ing finite element based PDEs on point surfaces. They constructed a number of
local FE matrices that represent the surface properties over small point neigh-
borhoods. These matrices are next assembled in a single matrix that allows PDE
discretization and solving on complete surface. Sapiro et al. [5] [6] implemented
a framework for solving PDEs on the surface via the level set method. They
represented the surface implicitly by the zero-level set of an embedding function
and extend the data on the surface to the 3D volume. This allowed them to
perform all the computation on the fixed Cartesian grid.

3 Mathematical Theory

3.1 Computation of Conformal Parameterization

A diffeomorphism f : M → N is a conformal mapping if it preserves the first
fundamental form up to a scaling factor (the conformal factor). Mathematically,
this means that ds2

M = λf∗(ds2
N ), where ds2

M and ds2
N are the first fundamental

form on M and N respectively and λ is the conformal factor. (See [7]) For a
diffeomorphism between two genus zero surfaces, a map is conformal if and only
if it minimizes the harmonic energy,Eharmonic. However, this is not true for
surfaces with genus equal to one or higher.

For high genus surfaces, Gu et. al [8] has proposed an efficient approach to
parameterize surfaces conformally to the 2D rectangles. This approach is based
on the homology group theory, the cohomology group theory and the Hodge
theory. We can summarize the algorithm with the following five steps. For details,
please refer to [8].
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Step 1: Given a high genus surface, find the homology basis {ξ1, ..., ξ2g} of its
homology group.

Step 2: Given the homology basis {ξ1, ..., ξ2g}, compute its dual basis
{w1, ..., w2g} which is called the cohomology basis.

Step 3: Diffuse the cohomology basis elements to harmonic 1-forms. This can be
done by solving the following simultaneous equations:
(1) dw = 0 (closedness) (2) Δw = 0 (harmonity) (3)

∫
ξi

wj =
δij (duality)
The existence of solution is guaranteed by Hodge theory.

Step 4: Compute the Hodge star conjugate {∗w1, ...,
∗ w2g} of {w1, ..., w2g}

Step 5: Integrate the holomorphic 1-form and get the conformal mapping: f(x) =∫
γ w + i∗w, where w = Σλiwi

The above five steps allow us to compute a conformal parametrization from
the surface onto the 2D domain. (See Figure 1)

Fig. 1. Conformal parametrization of a high genus surface onto the 2D rectangles

3.2 Differential Operators on Manifolds

Many physical phenomenon can be explained via PDEs. In image processing,
variational approaches are often used, which induces PDE solving. Therefore, it
is important to define a set of partial differential operators on general manifolds.
In this section, the partial differential operators on manifolds and the covariant
differentiation on tensor fields will be discussed.

Let M be a manifold and φ : R2 → M be the global conformal parametriza-
tion of M. With the conformal parametrization, we can do calculus on surfaces
similar to what we do on R

2. Suppose f : M → R is a smooth map. We will
firstly define partial derivative, Dxif , of f . On R2, we usually define the partial
derivative, ∂g

∂xi
, by taking limit. For example, ∂g

∂x = lim�x→0
f(x+�x,y)−f(x,y)

�x .
With the conformal parametrization, we can define the partial derivative on
scalar functions in the same manner. Because of the stretching effect, we have
to modify the denominator in the limit a little bit. Specifically, we define (1):

Dxf = lim�x→0
f◦φ(x+�x,y)−f◦φ(x,y)

dist(x+�x,x) = lim�x→0
f◦φ(x+�x,y)−f◦φ(x,y)√

λ�x
= 1√

λ

∂f◦φ
∂x ,

where λ is the conformal factor. Dyf is defined similarly.
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Now, the gradient of a function f , ∇Mf , is characterized by: df(Y ) =<
∇Mf, Y >. Simple checking gives us: ∇Mf =

∑
i,j gij∂if∂j , where (gij) is the

inverse of the Riemannian metric (gij).
With the conformal parametrization, we can define the gradient of f similar

to the definition on R2. Namely, (2):

∇Mf = Dxf i + Dyf j where

(i, j) = ( ∂
∂x/

√
< ∂

∂x , ∂
∂x > , ∂

∂y/
√

< ∂
∂y , ∂

∂y >)

= 1
λ [ f◦φ

∂x
∂
∂x + f◦φ

∂y
∂
∂y ]

Suppose h : M → R is a smooth function. With this definition of gradient,
we still have the following useful fact as in R2:

Length of h−1(0) =
∫

M δ(h)
√

< ∇Mh,∇Mh >dS

=
∫

M

√
< ∇MH(h),∇MH(h) >dS

=
∫

C
δ(h ◦ φ)

√
λ ||∇h ◦ φ||dxdy

=
∫

C

√
λ ||∇H(h ◦ φ)||dxdy (3)

where H is the Heaviside function. (See Appendix)
Next, we need to give a well-defined definition of differential operator on vec-

tor field. This is based on the tensor calculus [9]. In Euclidean space, we conven-
tionally differentiate the vector field (x1(t), ..., xn(t)) on a curve pointwisely to
get (x′

1(t), ..., x
′
n(t)). However, pointwise differentiation does not work for gen-

eral manifolds because it is not coordinate invariant. For example, consider the
parameterized circle in the plane given in Euclidean coordinate (x(t), y(t)) =
(cos t, sin t). Its acceleration at time t is (−cos t,−sin t). However, in polar co-
ordinates, the same curve is described as (r(t), θ(t)) = (1, t) and the acceleration
is (0, 0).

In order to differentiate a vector field
−→
V (t) along a curve, we have to write a

difference quotient involving
−→
V (t) and

−→
V (t0) which live on two different tangent

spaces. Therefore, it is not appropriate to subtract. Secondly, even if we can
differentiate the vector field pointwise, it is not guaranteed that the ”derivative”
is a tangent vector on the manifold.

We therefore need to define a differential operator on the vector field, which is
coordinate invariant. This can be done by covariant differentiation ∇XY , where
X is called the direction of the differentiation. To do so, we need to develop a
way to compare tangent vectors at different points. On R2, we usually parallelly
translate the vectors and subtract. But on general manifolds, we do not have
the concept of parallel translation. We say that a vector field

−→
V (γ(t)) along a

curve γ(t) is parallel if: Dt
−→
V (γ(t)) = orthogonal projection of d

dt

−→
V (γ(t)) onto

the tangent space = 0. We have the following important fact:

Parallel Translation : Given a curve γ : I → M and a vector
−→
V 0 ∈ Tγ(t0)M ,

there exists a unique parallel vector field
−→
V along γ with

−→
V (t0) = V0.
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With the parallel translation along a curve γ, we can define an operator:
P γ

t0t1 : Tγ(t0)M → Tγ(t1)M by setting P γ
t0t1(

−→
V 0) = V (t1) where V is the parallel

vector field along γ with
−→
V (0) =

−→
V 0. This is clearly an linear isomorphism.

Now, we can define ∇XY |p as follows: let γ : [0, 1] → M be a curve such that

γ(0) = p and γ′(0) = Y |p. We define (4): ∇XY |p = limt→0
P γ −1

0t Y (γ(t))−Y (p)
t

The covariant derivative satisfies the following properties:

(P1) ∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M)
(P2) ∇X(aY1 + bY2) = a∇XY1 + b∇XY2, a, b ∈ R

(P3) ∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M).

The above properties will determine the expression of the covariant deriva-
tive. Given a Riemannian manifold (M, g) where g = (gij) is the Riemannian
metric. Suppose {∂i} is the coordinate basis of the vector field. A simple veri-
fication will tell us the covariant derivative can be calculated by the following
formula:

< ∇∂i∂j , ∂l >= 1/2(∂igjl + ∂jgli − ∂lgij)

Simple calculation gives (5):

∇∂i∂j = Γ m
ij ∂m where Γ m

ij = 1/2 gml(∂igjl + ∂jgli − ∂lgij)

Suppose now the parametrization is conformal. The Riemannian metric (gij)
is simply (gij) = λI, where λ, I are the conformal factor and the identity matrix
respectively. We then have the following formula (6):

∇∂x∂x = 1
2λ

∂λ
∂x (∂x−∂y);∇∂y ∂y = 1

2λ
∂λ
∂y (−∂x+∂y);∇∂x∂y = 1

2λ (∂λ
∂y ∂x+ ∂λ

∂x∂y)

With this formula and the above properties (P1)-(P3), we can calculate∇XY
easily. Thus for example:

∇a ∂
∂x +b ∂

∂y

∂
∂y = a∇ ∂

∂x

∂
∂y + b∇ ∂

∂y

∂
∂y = a

2λ(∂λ
∂y ∂x + ∂λ

∂x∂y) + b
2λ (−∂λ

∂y ∂x + ∂λ
∂y ∂y)

= 1
2λ

∂λ
∂y (a− b)∂x + 1

2λ (a∂λ
∂x + b∂λ

∂y )∂y

With the definition of covariant derivative, we can define the divergence of
a vector field

∑2
i=1 Xi

∂
∂xi

. The idea is to take the covariant derivative of Xi

with respect to xi and sum them up, we then get a scalar which is called the
divergence of the vector field. For conformal parametrization, we have (7):

divM (Σ2
i=1Xi

∂
∂xi

) =
∑2

i=1
1
λ∂i(Xiλ)

If we calculate the divergence of ∇Mf , we get the Laplacian of f :

�Mf =
2∑

j=1

(1/λ) ∂j∂jf (8)

Interestingly, with the above definitions, we still have the integration by part
formula and the Green’s formula:∫

M < ∇Mu, X > dV = −
∫
M udivMXdV +

∫
∂M u < X,

−→
N > dṼ ,

−→
N is the

unit normal vector. (Integration by part) (9)
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M (u�Mv − v�Mu)dV =

∫
∂M (u∇Mv · −→N − v∇Mu · −→N )dṼ

(Green’s Theorem) (10)

Also, suppose C is a curve represented by the zero level set of φ : M → R.
We have the following useful property, similar to that on R2:

Geodesic curvature of C = divM ( ∇M φ
||∇Mφ|| ) (11) (See Appendix)

4 Navier-Stokes Equation on Surfaces

In this section, we will illustrate our idea by solving the Navier-Stokes equation
on surfaces with arbitrary topologies. The idea is to parameterize the Riemann
surface conformally onto the rectangular parameter domain based on the holo-
morphic differential one forms (Section 3.1). We then use the stable fluid solver
[10] on the 2-D domain to solve the problem.

On R
2, fluid flow is governed by the Navier-Stokes equation. For incompress-

ible fluid flow, we have the following (*):
∂u
∂t = −(u · +)u + v∇2u + f and ∇ · u = 0 (imcompressibility) (12)

where u = (u1, u2) is the fluid’s velocity, v is the viscosity and f = (f1, f2) are
external forces.

We can simulate the fluid flow as follow: we first use the stable fluid solver
to solve (*). Then update the position of the fluid by xnew = xold + udt, where
xnew = updated position of the fluid particle and xold= previous position of the
fluid particle.

To simulate fluid flow on the Riemann surface, we have to modify the 2D
Navier-Stokes equation by the manifold version of gradient and lapacian. Replac-
ing the gradient and laplacian by the manifold version of gradient and laplacian,
we get the corresponding Navier-Stokes equation for the Riemann surface M:

∂u
∂t

= −(u · ∇M )u + v�Mu + f (13)

Let φ be the conformal parametrization of M and w = u ◦ φ. We have:

∂w
∂t

= − 1
λ

(w · +)w +
1
λ

v�w + f (14)

Note that it is really the governing equation for fluids on the manifold — it
is the same physics that we know. For detail, see Aris’s book. [11]

We can next use the Stable Fluid Solver introduced by Stam to solve the
Navier-Stokes equation. We describe the algorithm as follow:

Step 1: (Adding force) We solve: ∂w1
∂t = f . The iterative scheme is: w1 = w0+dtf

Step 2: (diffusion equation) We solve: ∂w2
∂t = 1

λv�w1. We use a simple implicit
solver to get the iterative scheme: (I − dt 1

λv�)w2 = w1.



Solving PDEs on Manifolds with Global Conformal Parametrization 313

Fig. 2. Simulation of snow flowing down the surface

Fig. 3. Fluid flow on the surface in (A). Navier-Stoke’s equation for surface decoration
in (B).

Step 3: (advection equation) We solve: ∂w3
∂t = − 1

λ(w2 · +)w3. We use a semi-
Lagrangian to get an iterative scheme: w3 = w2(x− dt 1

λw2(x))
Step 4: (projection) We project w onto its imcompressible (divergence free) com-

ponent. For this, we first solve the Poisson equation: �ϕ = ∇ ·w3

We then update: w4 = w3 − 1
λ∇ϕ. Update w = w4.

Step 5: (Update fluid position) Update x by xnew = xold + wdt

As an example, we simulate the snow flowing down the surface based on the
Navier-Stokes equation in Figure 2. In Figure 3 (A), we simulate fluid flow on
a bunny surface by adding a S-shaped force. In Figure 3 (B), we simulate fluid
flow on surfaces for surface decoration.

5 Image Processing on Surfaces

5.1 Chan-Vese Segmentation on Surfaces

Segmentation is an important technique in image processing to extract useful
region. One commonly used technique is the Chan-Vese (CV) segmentation tech-
nique, which is based on the level set method [12]. Here, we will extend the CV
segmentation on R

2 to arbitrary Riemann surface M .
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Let φ : R2 → M be the conformal parametrization of the surface M . We
propose to minimize the following energy functional: (15)

F (c1, c2, ψ) =
∫

M (u0−c1)2H(ψ)dS+
∫

M (u0−c2)2(1−H(ψ))dS+νlength of
ψ−1({0}) =

∫
M

(u0 − c1)2H(ψ)dS +
∫

M
(u0 − c2)2(1 − H(ψ))dS +

ν
∫

M |∇MH(ψ)|MdS,

where ψ : M → R is the level set function and | · |M =
√

< ·, · >.

With the conformal parametrization, we have:

F (c1, c2, ψ) =
∫

R2 λ(u0 ◦φ−c1)2H(ψ ◦φ)dxdy +
∫

R2 λ(u0 ◦φ−c2)2(1−H(ψ ◦
φ))dxdy

+ν
∫

R2

√
λ|∇H(ψ ◦ φ)|dxdy,

For simplicity, we let ζ = ψ ◦ φ and w0 = u0 ◦ φ. Fixing ζ, we must have:

c1(t) = Ω
w0H(ζ(t,x,y))λdxdy

Ω
H(ζ(t,x,y))λdxdy

(16)

c2(t) = Ω
w0(1−H(ζ(t,x,y))λdxdy

Ω
(1−H(ζ(t,x,y)))λdxdy

(17)

Fixing c1, c2, the Euler-Lagrange equation becomes:

∂ζ

∂t
= λδ(ζ)[ ν

1
λ
+ ·(

√
λ
∇ζ

||∇ζ|| )− (w0 − c1)2 + (w0 − c2)2] (18)

Fig. 4. CV segmentation on surface in (A). CV segmentation on surface for sulci ex-
traction on the cortical surface in (B).

In Figure 4(A), we illustrate the CV segmentation on the bunny surface. As
shown in the figure, the initial contour evolves to the original image in a few
iterations. One application of CV segmentation is to extract the sulci position on
the cortical surface. The sulci position is usually the high curvature region. We
can consider the intensity as a function of curvatures, such as Mean curvatures
and Gaussian curvatures. In Figure 4 (B), we illustrate how we can extract the
sulci position on the cortical surface using CV segmentation. Here, we consider
the mean curvature as the intensity.
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5.2 Image Denoising on Surfaces

One important task of surface processing is the restoration or reconstruction of
a true image u from an observed image f . In many applications, the measure
image is polluted by noise or blur. The distorted image need to be denoised
to understand the useful part of the image. On R2, Rudin, Osher and Fatemi
(ROF) has proposed the following model [13]:

infuF (u) =
∫

Ω

|∇u|+ ν|f − u|2dxdy (19)

We proceed to extend the ROF on 2D to any surface M with arbitrary
topologies. Let φ be the conformal parametrization of M and ζ = u◦φ. Following
the 2D ROF model, we propose to minimize the following energy:

infuF (u) =
∫

M |∇Mu|M + ν|f − u|2dS (20) or

infuF (ζ) =
∫

R2

√
λ|∇ζ| + λν|f − ζ|2dxdy (21)

We can minimize the above energy by solving the Euler-Lagrange equation:
∂u
∂t = 2ν(f − u) + divM ( ∇M u

|∇M u|M ) (22)
or
∂ζ
∂t = 2ν(f−ζ)+ 1

λdiv(
√

λ ∇ζ
|∇ζ| ) on the rectangular parameter domain. (23)

and ∂ζ
∂−→n = 0 on the boundary (24).

Fig. 5. ROF denoising on the human face

As an example, we use the ROF model to denoise the dirty scar on the human
face in Figure 5. It is observed that the image can be significantly improved.

5.3 Image Inpainting on Surfaces

Inpainting, originally an artist’s work, is the process of filling in the missing or
desired image information where it is unavailable. (see Figure 6). Such ”defect”
domain may be introduced by the aging of the canvas and oil of an ancient
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painting, and the occlusion by undesired objects in front of a scene of interest.
For 2D images, Chan & Shen has introduced an inpainting model via curvature
driven diffusion (CDD) [14]. We are going to extend this model to 3D Riemann
surfaces.

Suppose Ω is the domain of the image on R2. Let D be the inpainting domain
(the occluded region). The CDD model reads:

∂u
∂t = ∇ · [ g(|κ|)

|∇u| ∇u], x ∈ D (25)

and u = u0, x ∈ Dc (26)
Here κ denotes the curvature, and g(s) is defined to be zero if s = 0 and

equal to infinity if s = ∞.
The curvature κ at a pixel x is the scalar curvature of the isophote through

it and is given by: κ = ∇ · ( ∇u
|∇u| ) (27)

Suppose now Ω is the image domain on a Riemann surface M . D ⊂ M is
the inpainting domain. Let φ be the conformal parametrization of the surface
and let ζ = u◦φ. Replacing the gradient and divergence by the manifold version
of gradient and divergence, we get the CDD inpainting model for the Riemann
surface M :

∂u
∂t = divM · [ g(|κ|)

|∇M u|M ∇Mu] = 1
λ∇ · [

√
λg(|κ|)
|∇ζ| ∇ζ], x ∈ φ−1(D) (29)

and ζ = ζ0, x ∈ φ−1(Dc) (30)
The curvature κ at a pixel x is given by:

κ = divM · ( ∇M u
|∇M u|M ) = 1

λ∇ · (
√

λ ∇ζ
|∇ζ| ) (31)

In Figure 6, we illustrate the image inpainting on the human face. In (a),
some region of the image is occluded. In (b), the image is effectively restored
using the curvature driven diffusion inpainting technique.

Fig. 6. Curvature driven diffusion inpainting on the human face

6 Conclusion and Future Work

In this paper, we propose a method to solve partial differential equations on
surface with arbitrary topologies. The idea is to map the surface conformally onto
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a simple parameter domain, namely, the 2D rectangle. We can next transform the
PDE on the surface into a modified PDE on the 2D domain. We can then solve
the PDE with the well-developed numerical schemes on R2. With the conformal
parametrization, the differential operators defined on the surface closely resemble
to the usual Euclidean counterpart, except for a multiplication of the conformal
factor. Also, the parametrization of the surface using holomorphic 1-form allows
us to parametrize (high genus)surface with the minimum number of coordinate
chart. Thus, less boundary adjustment are needed when solving the PDEs on
the surface. Finally, unlike the conventional way that projects the differential
operators on R

3 onto the surface, we directly define differential operators on
the parameter domain without the need of doing projection. We thus avoid
the complicated projection operation in our algorithm. We have illustrated our
method by solving the Navier-Stokes equation on the surface. We also tested
our method by solving some PDE-based surface processing problems, such as
surface segmentation and surface denoising. In the future, we will look for more
applications of solving PDEs on the surface.
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Appendix

Claim : Suppose h : M → R is a smooth function. Then:
Length of h−1(0) =

∫
M

√
< ∇MH(h),∇MH(h) >dS =

∫
C

√
λ ||∇H(h ◦

φ)||dxdy

Proof :

Recall that the Co-area formula reads:∫
Ω⊂R2 f(x, y)|∇u|dxdy =

∫
R

∫
{u(x,y)=r} f(x, y)dHdr

where H is the Hausdorff measure.

Let φ be the conformal parametrization of the surface M and ζ = u ◦ φ.
Then,∫

M
|∇MH(u)|MdS =

∫
R2 δ(ζ)|∇ζ|

√
λdxdy=

∫
R

∫
{ζ(x,y)=r}

√
λδ(ζ)dsdr =∫

{ζ(x,y)=0} ds

=
∫ 1
0

√
λ|c′(t)|dt =

∫ 1
0

√
λ|φ ◦ c′(t)|dt = length of{u = 0}

where c(t) is the parametrization of ζ(x, y) = 0 Q.E.D.

Claim : Let φ : M → R. The geodesic curvature κ of φ−1({0}) =
divM ( ∇M φ√

<∇M φ,∇M φ>
)

Proof :

Recall that the geodesic curvature of of a curve −→γ

=
√

<Dt
−̇→γ ,Dt

−̇→γ >

<−̇→γ ,−̇→γ >
− <Dt

−̇→γ ,−̇→γ >

<−̇→γ ,−̇→γ >3/2
= <−̇→γ ,Dt

−̇→γ ⊥
>

<−̇→γ ,−̇→γ >3/2

Let the parametrization of the zero level set of φ be −→γ = (X(t), Y (t)). Then
φ(X(t), Y (t)) = 0.

This implies (1): < ∇Mφ, −̇→γ >= 0

and (2): < Dt(∇Mφ), −̇→γ > + < Dt
−̇→γ ,∇Mφ >= 0

Now, Dt
−→
V (t) =

∑2
i=1

∑2
j=1

∑2
k=1(V̇k + Γ k

ijγiVj)∂k

Thus, for conformal parametrization we have (3):

Dt
−̇→γ = (Ẍ+( 1

2λ
∂λ
∂x )(Ẋ2−Ẏ 2)−( 1

λ
∂λ
∂y ẊẎ ) , Ÿ −( 1

2λ
∂λ
∂y )(Ẋ2−Ẏ 2)−( 1

λ
∂λ
∂x )ẊẎ )

and (4):

Dt(∇Mφ) = (φ̇x +( 1
2λ

∂λ
∂x )(φx

2−φy
2)−( 1

λ
∂λ
∂y φxφy) , φ̇y−( 1

2λ
∂λ
∂y )(φx

2−φy
2)−

( 1
λ

∂λ
∂x )φxφy )

Combining (1), (2), (3), (4), we have: Ẋ2 + Ẏ 2 = (1 + (φx/φy)2)Ẋ2 and
<Dt

−̇→γ ⊥
,−̇→γ >

<−̇→γ ,−̇→γ >3/2
= λ(ẊŸ − Ẏ Ẍ)
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+Ẏ (Ẋ2 + Ẏ 2)( 1
2λ

∂λ
∂x )

So, κ = <−̇→γ ,Dt
−̇→γ ⊥

>

<−̇→γ ,−̇→γ >3/2
= λ(ẊŸ −Ẏ Ẍ)

λ3/2(Ẋ2+Ẏ 2)3/2

= 1√
λ
(

φxxφ2
y−2φxyφxφy+φyyφ2

x

(φ2
x+φ2

y)3/2 ) + 1
2λ3/2 (φx

∂λ
∂x + φy

∂λ
∂x )

= 1√
λ
∇ · ( ∇φ

|∇φ| ) + 1
λ3/2∇φ · ∇λ = 1

λ∇ · (λ( 1/λ∇φ√
λ|∇φ|2 ))

= 1
λ∇· (λ( ∇M φ√

<∇M φ,∇M φ>
)) = divM ( ∇M φ√

<∇M φ,∇M φ>
) Q.E.D.

= − λ
φy

[φxxẊ2 + 2φxyẊẎ + φyy Ẏ 2]Ẋ − Ẋ(Ẋ2 + Ẏ 2)( 1
2λ

∂λ
∂y )



Fast Marching Method for Generic Shape from Shading
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Abstract. We develop a fast numerical method to approximate the solutions of
a wide class of equations associated to the Shape From Shading problem. Our
method, which is based on the control theory and the interfaces propagation, is
an extension of the “Fast Marching Method” (FMM) [30,25]. In particular our
method extends the FMM to some equations for which the solution is not sys-
tematically decreasing along the optimal trajectories. We apply with success our
one-pass method to the Shape From Shading equations which are involved by the
most relevant and recent modelings [22,21] and which cannot be handled by the
most recent extensions of the FMM [26,8].

1 Introduction

The Shape From Shading (SFS) problem is to compute the three-dimensional shape of a
surface from a single black and white image of that surface. The field was pioneered by
Horn who was the first to pose the problem as that of finding the solution of a nonlinear
first-order partial differential equation (PDE) called the brightness equation [11]. The
first explicit PDE considered in this field is the Eikonal equation

|∇u| = r(x), ∀x ∈ Ω (1)

(modeling based on a single far frontal light source and orthographic camera). Ω is an
open subset of R

2 which represents the image domain, e.g., the rectangle ]0, X [×]0, Y [.
r : Ω → R is a non-negative function directly related to the brightness image. From
the work of Horn [11], a number of explicit PDEs corresponding to different model-
ings have been developed and studied [15,24,27,20,6]. By introducing the “generic”
SFS equation Hg(x,∇u(x)) = 0, ∀x ∈ Ω (Hg being described below), Prados and
Faugeras [22,21] have recently unified a number of these explicit equations and thus
their associated models. The associated “generic” SFS Hamiltonian is defined by

Hg(x, p) = κx

√
|Dx Rxp + vx|2 + K2

x + wx · p + cx, (2)

where κx, Kx, μx, νx, cx,vx,wx depend on the chosen modeling, see [22,17]. For ex-
ample, the classical Rouy/Tourin Hamiltonian [24]

HR/T (x, p) = I(x)
√

1 + |∇u|2 + l · ∇u− γ (3)

(orthographic camera + single far light source) is a particular case of the generic SFS
Hamiltonian Hg; L = (l, γ) represents the direction of the light source; I(x) is the

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 320–331, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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brightness of the image at pixel x. Here, let us remark that HR/T (x, 0) = I(x)− γ can
be strictly negative.

In addition to the modeling, Prados and Faugeras [17,21] have also unified a number
of theoretical results and of SFS numerical methods based on PDEs. Nevertheless they
just consider iterative methods. Also, the iterative methods suffer of some optimality
weaknesses since they use alternating raster scans similarly as the ones proposed [9,29].
In this paper, we get rid of these weaknesses by proposing a single pass method based
on front propagation and Fast Marching techniques.

The single pass methods related to front propagation like the level set method
[16] and Fast Marching Methods [25] have already been applied to the SFS problem
[12,25,13,31,28] (see [5,25] and references therein for other applications). In particu-
lar, Sethian [25] was the first who applies the “Fast Marching Method”for solving the
SFS problem. This first work deals only with the simplest version of the SFS problem
associated to the Eikonal equation (1) (orthographic camera; single, far and front light
source). Recently, Kimmel and Sethian [13] have proposed an adaptation of this initial
algorithm in order to deal with far oblique light source. This upgraded method seems
very delicate, requires a change of variable and does not seems adaptable to more gen-
eral modelings. Roughly speaking, most of the authors [13,28,6] use various techniques
(e.g. changes of variables, introductions of new unknowns) in order to get back to the
Eikonal equation and then to use the initial tools developed by Sethian. As opposed to
[28], Yuen et al. [31] propose a real adaptation of the FMMs to the perspective SFS
problem. Nevertheless, this work is reduced to frontal light source, also in that case
the subjacent cost function is non negative. Contrary to all the previous work, the fast
method we propose in this paper allows to solve in one-pass the main PDEs associated
to the most recent, realistic and relevant modelings of the SFS literature. In particular,
it allows to solve all the SFS equations collected in [22,21] (many of which have cost
functions of arbitrary sign). It is completely generic and contrary for example to [13],
we do not need any change of variables.

More generally, the most recent work on “Fast Marching Methods” only allows to
solve equations of type

H(x,∇u(x)) = 0 ∀x ∈ Ω, (4)

such that H(x, 0) = 0 (with H convex with respect to ∇u). Here, we relax this key
assumption which is strongly related to the causality principle (see Section 3).

2 Control Formulation of the Problem

In this section we reformulate the problem using tools from control theory. The reader
unfamiliar with these tools can refer to the comprehensive book [1]. First, we use the
Legendre transform [14] to rewrite equation (4) as: ∀ x ∈ Ω,

sup
a∈A

{−f(x, a) · ∇u(x)− l(x, a)} = 0. (5)
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The functions l and f are respectively called the cost function and the dynamics;
a ∈ A is an admissible value of the control. For example, we can rewrite the generic
SFS Hamiltonian Hg as such a supremum with

f(x, a) = − [ κxRT
x DxRx.a + wx ],

l(x, a) = − [ Kxκx

√
1− |a|2 + κx(RT

x vx) · a + cx ]

with A the closed unit ball of R2; RT
x being the matrix transpose of Rx; see [17,22]

for all details. This kind of equation must be complemented by boundary conditions in
order to be well posed. We therefore add the following constraints:

u(x) = ϕ(x) ∀x ∈ T , (6)

u(x) = +∞ ∀x ∈ ∂Ω \ T , (7)

where the target T is a nonempty closed subset of Ω and ϕ : T → R defines a boundary
condition of Dirichlet type. Also equations (5) and (4) are now considered on Ω \ T
instead of Ω. Let V be the value function

V (x) = inf
α∈A

τx(α)

0
l(yx(τ, α), α(τ ))dτ + ϕ(yx(τx(α), α)) . (8)

A is the set of the admissible controls (a set of the measurable functions of t ∈ [0, +∞[
with value in A, the latter being a closed bounded subset of RM ). yx(., α) is a trajectory
controlled by α starting from x; this is the solution of the dynamical system y′(τ) =
f(y(τ), α(τ)), τ > 0, y(0) = x; τx(α) is the smallest time τ such that yx(τ) reaches1

T ∪ ∂Ω. It is well known [14,1] that V is the unique viscosity solution2 of equation
(5)-(6)-(7) and that V verifies the dynamical programming principle [14,1].

Finally, we denote α∗
x, τ∗

x and y∗
x the optimal control, the optimal time and the

optimal trajectory associated to (8) (i.e. for which the inf of (8) is reached).
For example, in the particular case of the Eikonal equation (1), the optimal trajecto-

ries correspond to the gradient lines. Nevertheless, as shown in [26], this is not true for
any equation (∇u(x) �= y∗

x
′(0) = f(x, α∗

x(0))).

3 Approximation Scheme and Causality

For simplicity, in this paper we deal with a regular mesh. For an extension to the ir-
regular meshes we refer the reader to [17,23]. The reader unfamiliar with the notion
of approximation schemes can refer to [2]. Let us just recall that, following [2], an
approximation scheme is a functional equation of the form

S(ρ, x, u(x), u) = 0 ∀x ∈ Ω,

which “approximates” the considered PDE. S is defined on M × Ω × R × B(Ω) into R,
M = R

+ N and ρ = (h1, ..., hN ) ∈M defines the size of the mesh that is used in the

1 For notations simplicity, we extend ϕ on T ∪∂Ω, and we define ϕ(x) = +∞, ∀x ∈ ∂Ω \T .
2 More accurately, we must consider the notion of “Singular Discontinuous Viscosity Solutions”

(SDVS) of (5)-(6)-(7) instead of the classical notion of viscosity solutions [17].



Fast Marching Method for Generic Shape From Shading 323

corresponding numerical algorithms. B(D) is the space of bounded functions defined
on a set D. In order to obtain a consistent scheme, the function S is obtained by approx-
imating ∇u by finite differences and then by substituting ∇u by its approximation in
the initial equation. The main property allowing to ensure the convergence of the com-
puted numerical solution toward the viscosity solution [7,14,1,17] is the monotonicity
of the scheme (i.e. the function u �→ S(ρ, x, t, u) is nonincreasing) [2].

In most of the FMMs the gradient∇u is discretized by

∇u(x) # t− u(x + sihiei)
−sihi

Above, t corresponds to u(x); we replace u(x) by t in order to emphasize that this is
the update value. (e1, .., en) is the canonical basis; ∀i, si ∈ {±1}. With the exception
of the recent work [26], the simplex {x, x + s1h1e1, ..., x + snhnen} (in practice the
sign vector (s1, .., sn)) is chosen in such a way that “it contains−∇u”, i.e. such that

∀i = 1..n, si is the opposite of the sign of [∇u]i. (9)

In the Eikonal case, the control formulation of equation (1) is supa∈B(0,1){a ·∇u(x)−
r(x)} = 0 and the optimal control is always ax = ∇u(x)

|∇u(x)| . Thus the scheme

Seiko(ρ, x, t, u) =
t − u(x + sihiei)

−sihi
− r(x)

= sup
a∈B(0,1)

a · t − u(x + sihiei)
−sihi

− r(x) , (10)

where si defined by (9), is clearly monotonic. Nevertheless, this is generally false for
any equation of the form (4). In effect, in the general case, the scheme

Sc(ρ, x, t, u) = H x,
t − u(x + sihiei)

−sihi

= sup
a∈A

{−f(x, a) · t − u(x + sihiei)
−sihi

− l(x, a)} (11)

with si defined by (9), is not monotonic anymore as soon as there exists i ∈ [1..n]
s.t. sign[f(x, ax)]i �= si (= −sign[∇u]i), where ax is the optimal a of (11) [t being
the root of Sc(ρ, x, t, u) = 0]. For obtaining a monotonic scheme, we must change the
choice of the simplex (i.e. the choice of the si). In fact, we must choose the simplex
with respect to the dynamics of the optimal control (and not to the gradient). If we
define si(x, a) = signfi(x, a), the scheme3

S(ρ, x, t, u) = sup
a∈A

{−f(x, a) · t − u(x + si(x, a)hiei)
−si(x, a)hi

− l(x, a)} (12)

is naturally monotonic, and the “good” one. In other words, this scheme is obtained
from (4) by using only the backward and forward approximations of the partial deriv-
atives and by choosing the good one according to the dynamic of the optimal control.

3 Scheme already suggested by Prados and Faugeras [20,17].
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Because of space limitations we omit the details of the implementation of this scheme
and refer the reader to [23,17]. Let us just note here that the approximation scheme
proposed by Sethian and Vladimirsky is different from the one presented here: [26] is
based on the use of more simplexes than those contained in the immediate neighbors
of the considered site, unlike the scheme (12). Moreover, our scheme is consistent (see
[17]).

Our scheme suggests then that the reconstruction must follow (track) the optimal
trajectories, if we want to be able to recover the viscosity solution with a one-pass al-
gorithm. Sethian and Vladimirsky [26] demonstrate this fundamental aspect intuitively
and experimentally. As opposed to the first work [30,25] in which the causality was
directly related to the gradient lines, in [26] the causality property is based on optimal
trajectories. Nevertheless, Sethian and Vladimirsky’s causality is based on the fact that
the solution is strictly decreasing along the optimal trajectories. This property is verified
for the equations considered in [26]

sup
a∈A

−f(x, a)a · ∇u− 1 = 0, ∀x ∈ Ω, (13)

since for these equations the cost function is l(x, a) = 1 > 0. Nevertheless, for any
equation of type (4) such that the cost function l takes some negative values, this
monotonicity property does not hold: the solution can arbitrary and alternatively in-
crease and decrease along the optimal trajectories. Also, in the general case the causality
property used by Sethian and Vladimirsky [26] does not apply.

Finally, let us emphasize that as it was shown in [17], most of the Shape From
Shading equations have generally cost functions of arbitrary sign. This is the case
for example for the classical Rouy/Tourin Hamiltonian HR/T (where, lR/T (x, a) =
I(x)

√
1 + |a|2 − γ) and for the perspective SFS Hamiltonian Hpers

P/F [20] which fit in
the class of Hamiltonians given by equation (4).

In the following, we slightly reinterpret the FMMs; we generalize and weaken the
principle of causality. Later on we propose a new practical causality property which
extends the one used by [26] to any equation of type (4).

4 Update Ordering for “Single Pass” Method

4.1 Related Work and Basic Ideas

For the moment, let us assume that we know the optimal trajectories y∗
x. We can then

recover directly the solution of equation (5)-(6)-(7) by going back up these curves:

V (x) =
τx(α∗

x)

0
l(y∗

x(τ ), α∗
x(τ ))dτ + ϕ(y∗

x(τx(α∗
x))). (14)

Then from the numerical point of view, we can reconstruct the solution by a direct in-
tegration along the optimal trajectories. This idea corresponds roughly to the method
of characteristic strips introduced in the Shape from Shading literature by Horn [10]
for solving the Eikonal equation. In this work, the knowledge of the optimal trajecto-
ries was implicitly replaced by Neumann conditions. For removing some “resticking”
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problems and for improving the stability of the method, we can go back up all the opti-
mal trajectories simultaneously and not separately. More precisely, the idea is then the
following. We assume that the solution is known inside a closed curve Ct (t ≥ 0) which
propagates along the optimal trajectories. Basically, the curves Ct must verify: for all x
in Ω, the optimal trajectory y∗

x always intersects the curve Ct, but only once for each
t ≥ 0. Moreover, if t1 < t2 then Ωt1 ⊂ Ωt2 (where Ωt is the open subset such that
∂Ωt = Ct). This idea corresponds exactly to the one introduced by Bruckstein [3] for
solving the Eikonal SFS problem. To alleviate some instability and topological prob-
lems [16], the best way is then to use the “level set” method introduced by Osher and
Sethian [16] or Fast Marching techniques [25].

4.2 Curve Propagations and Associated Costs

Now, we assume that we do not know the optimal trajectories. This is usually the case
in most of the applications, in particular in Shape From Shading. In this case, we must
reconstruct simultaneously the solution u and the curves Ct. In this way, we are sure
that the updates of the values of the solution propagate in the same way as the optimal
trajectories. The idea is then the following: let us assume that we already know Ct and
the values of the solution on Ωt. Now, if we want to compute the values of the solution
u on Ωt+dt, we need to compute explicitly these values, but also we need to compute
the new curve Ct+dt. In order to practically handle the curves Ct, we define them as the
level sets (i.e. the isocontours) of a “cost” C(x) defined on Ω into R. For example, in
the basic “Fast Marching Method” for the Eikonal equation [30,25], the chosen cost C
is equal to u. Also, the curves Ct correspond to the isocontours of the solutions. In other
respects, in a sense the function z̃ introduced in [13] could be consider as such a cost,
(nevertheless let us note that z̃ does not depend on x but on x̃ [which himself depends
on x and u(x)]; see [13]).

In order to reach our goal, let us remind an important (but too many times neglected)
difficulty encountered when we deal with equations of type (5)-(6)-(7): the optimal
trajectories y∗

x and the solution V significantly depend on the set Ω. Therefore, in the
sequel, when it is relevant, we indicate the associated set by specifying it by an index
as follow: α∗

x = α∗
x(Ω), y∗

x = y∗
x(Ω), τ∗

x = τ∗
x(Ω), V = VΩ .

Finally, to be completely rigorous, if the optimal trajectories depend on the set on which
we work, then the curves Ct and their associated cost C must also depend on it. Also, we
will use the same type of notations as above for the cost C (nevertheless, in the sequel
we use the notations Ct and Ωt associated with the iso-curves only in reference to Ω
and equation (5)-(6)-(7)).

The above remark is mainly motivated by the following idea. First, let us remind
that we do not know the cost CΩ on Ω \ Ct (since this is equivalent to knowing all the
propagating closed curves). Moreover, it seems reasonable to assume that we are not
able to directly compute CΩ even on a very close neighborhood N of Ωt (N ⊂ Ω).
In effect, any point x ∈ N \ Ωt (even if it is extremely close to Ct) can have an
optimal trajectory y∗

x(Ω) which goes away very far from Ct before coming back to it.
Nevertheless it is reasonable to assume that we are able to compute (an approximation
of) CN on a close neighborhoodN of Ωt (let us remind that CN is the cost associated
to the equation (5N )-(6N )-(7N )).
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For example in [26], the neighborhoodN (considered above) corresponds with the
set of the “Considered” points. In the classical methods, the cost C corresponds with
the solution of the considered equation. Also, the values V (x) computed for all the
“Considered” points x are (numerical approximation of) the cost CN (x).
Later on, from the knowledge of the cost CN on the neighborhoodN of Ωt, we would
like to find Ct+dt such that Ct ⊂ Ct+dt ⊂ N . Also, if the costs verify the hypotheses

(H1) CW(x) is decreasing along the optimal trajectories y∗
x(W), i.e. : for all x and

τ > 0 (small enough) CW(y∗
x(W)(τ)) ≤ CW(x),

(H2) it is decreasing with respect to W , i.e.:
if Ω1 ⊂ Ω2, then CΩ1(x) ≥ CΩ2(x),

(H3) let x1 ∈ Ω1 ⊂ Ω2. If y∗
x1(Ω2)(.) stays in Ω1 then CΩ2(x1) = CΩ1(x1),

then we have the following

Proposition 1. Let us assume that the hypotheses (H1), (H2) and (H3) hold. Let Ct+dt

be such that Ct ⊂ Ct+dt ⊂ N . Therefore for all x in Ωt+dt,

CΩ(x) = CN (x).

In other words, CN coincide with CΩ on Ωt+dt.

Proof. Let x in Ωt+dt. By the hypothesis (H1), the optimal trajectory y∗
x(Ω) stays in

Ωt+dt. We then apply the hypothesis (H3) with Ω1 = Ωt+dt and Ω2 = Ω. We have
therefore CΩ(x) = CΩt+dt

(x). Since we have Ct+dt ⊂ N ⊂ Ω, then by the hypothesis
(H2), CΩ(x) = CΩt+dt

(x) = CN (x). ,-
Now, let us consider the problem from the discret point of view. We assume that the

set Ω is “covered” by a grid of points. We divide the set of the grid points into three
classes (as for the classical “Fast Marching Methods” [26]): Accepted A, Considered
C, Far F. The Accepted points are the ones in Ωt (i.e. inside Ct); we therefore suppose
that we already know the values of the solution for all the grid points in A. The set of
Considered points C is the set of the adjacent points to the Accepted points. The union
C ∪A is the discrete version of the neighborhoodN of Ωt. The set of the Far points
corresponds to the other points of the grid.

Let us remind that we know the values of the solution of (5)-(6)-(7) on Ωt and that
we want to compute the ones on Ωt+dt. Also, this requires the preliminary computa-
tion of the new curve Ct+dt. From the practical and discrete point of view, we want
to extend Ωt to Ωt+dt in such a way that Ωt+dt \ Ωt contains a single point of the
grid. This is therefore equivalent to finding the point x0 of C which has the lowest cost
CΩ (CΩ(x0) = minx∈C CΩ(x)) and then we transfer it to the set of Accepted points A
(which is then enlarged). Also, if the costs C verify the hypotheses (H1), (H2) and (H3),
then the following proposition allows to find this point x0 (assuming that we know the
costs CN (x) for all x in N ).

Proposition 2. Let us assume that the costs C verify (H1), (H2) and (H3). The point
x0 ∈ C which has the smallest cost CΩ(x0) is the point x of C which has the smallest
cost CN (x); Also, CΩ(x0) = CN (x0).

Proof. Let x0 be the point in C which has the less cost CΩ(x0). Let Ct+dt be the
level set of the cost CΩ associated to the value CΩ(x0). Since Ct ⊂ Ct+dt ⊂ N , By
Proposition 1 we have CΩ(x0) = CN (x0).
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Let x be any point in C. By hypothesis (H2), we have CN (x) ≥ CΩ(x). By definition
of x0, we have CΩ(x) ≥ CΩ(x0). Therefore, CN (x) ≥ CN (x0). ,-

Thus if (H1), (H2) and (H3) hold, then from the numerical point of view, for extending
Ωt to Ωt+dt, we have just to compute the costs CN (x) for all x in the C and to search
the point x0 in C which has the smallest cost CN .

4.3 Proposed Costs

At this stage, let us remind that the method we propose here needs the explicit com-
putations of some approximations of the cost C and of the solution V . Since our final
objective is only to compute some approximations of V , the computations of the ap-
proximations CN can appear useless and expensive, and so decrease the interest of the
method. It seems therefore reasonable and quite relevant to search and use some costs
CW which are directly related to the values of the solution VW , as in the Eikonal case
and the classical FMMs.

Example 1. In [26], Sethian and Vladimirsky consider equations of type (13), i.e. some
equations (5) with f(x, a) = f(x, a)a and l(x, a) = 1. So the viscosity solution
V of (13) (complemented by some adequate boundary conditions) is V (x) = τ∗

x +
ϕ(y∗

x(τ∗
x )). Thus, if the boundary condition ϕ imposed on T is a constant function

(ϕ(x) = c ∈ R for all x in T ) then V (x) = τ∗
x + c. In this case, it is therefore ju-

dicious and reasonable to choose CW(x) = τ∗
x (W). VW and the CW are thus directly

related; Consequently the curves Ct correspond with the isocontours of the solution of
(13). Also, the costs CW verify trivially the hypotheses (H1), (H2) and (H3).

In the particular case considered by Sethian and Vladimirsky [26] (Example 1), the
cost directly related to the values of the solution is trivial. Nevertheless in the general
case, in particular for HJB equations with a cost fonction l(x, a) depending on a or with
an arbitrary sign, we need to work a little more.

Let us remind that generally the isocontours of the solution cannot play the role of
the curves Ct since the values of the solution u are not decreasing along the optimal
trajectories (i.e. for all x, the function t �→ u(y∗

x(t)) is not decreasing). A second ba-
sic idea could be to choose systematically the cost C(x) = τ∗

x since this cost verifies
naturally the hypotheses (H1), (H2) and (H3). Nevertheless, computing this cost can be
very difficult, and generally, it is really not related with the solution u of the considered
equation. In order to define an adequate cost in the general case, let us introduce the
following definitions.

Let ψ be a subsolution of (4), i.e.

H(x, ψ(x)) ≤ 0, ∀x ∈ Ω.

In [17], Prados and Faugeras describe the subsolutions of the main classical SFS equa-
tions. For example, for the classical Rouy/Tourin Hamiltonian HR/T (equation (3))
ψ(x) = − 1

γ l · x is subsolution.

Let Z(x) be the multivalued map [4] on Ω defined as:

Z(x) = {p ∈ R
N : H(x, p) ≤ 0}.
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Let δ : Ω × RN → R be the support function [4] of the set Z̃(x) = Z(x) − ∇ψ(x),
i.e.:

δ(x, p) = max{pq : q ∈ Z̃(x)}.
Finally, for all x1, x2 in W, let us denote

LW (x1, x2) = inf
ξ∈Ξx1,x2

1

0
δ(ξ(t),−ξ̇(t))dt (15)

where Ξx1,x2 is the set of ξ(t) ∈ W 1,∞([0, 1],W) s.t. ξ(0) = x1 and ξ(1) = x2.
A complete study and description on these notions can be found in [17,4,19,18]. In
particular, in [17], it is proved that

V (x) = ψ(x) + min{LΩ\T (x, z) + ϕ(z) − ψ(z) | z ∈ T }. (16)

is the unique Singular Discontinuous Viscosity Solution (SDVS) of (5)-(6)-(7), see
[17]. Let us emphasize here that δ(., .) and so LW are non-negative. Also LW(x, z) is
a semi-distance.

These results and notations in hand, we can now define an appropriate cost for our
“generic” HJB equation:

CW (x) = LW(x, z∗x),
where z∗x is the optimal z of (16). This cost is trivially decreasing along the optimal tra-
jectories and it verifies naturally the assumptions (H1)-(H2)-(H3). Finally, if the bound-
ary condition ϕ verifies “ϕ− ψ is constant on the target T ” then the viscosity solution
VW is directly related to CW : it coincides with CW + ψ (up to the addition of a con-
stant). Also, the isocontour of the cost C(x), and so Ct, corresponds with the isocontour
of the V − ψ.

5 Proposed Algorithm

The grid points are divided into the three classes (as in the basic “Fast Marching
Method”): Accepted A, Considered C, Far F (see above). ψ is a subsolution of H(x,
∇u) = 0 as defined in Section 4.3. U defined on the whole grid is the approximation of
the solution of equation (5)-(6)-(7). Ũ defined on the Considered points is the approx-
imation of the solution of equation (5N )-(6N )-(7N ), where N is the neighborhood
associated to A ∪C.

Algorithm 1.
1. Start with all the grid points in Far.
2. Move the grid points on the boundary ∂Ω and on the target T to the Accepted. For

all these points x ∈ T , put U(x) = ϕ(x), for the other points put U(x) = +∞.
3. Move all the grid points x ∈ Ω adjacent to the Accepted points into Considered

and for each of these points, evaluate Ũ(x) by using the update scheme (12).
4. Find the grid point x0 ∈ C with the smallest value Ũ(x) − ψ(x). Move x0 from

Considered to Accepted; Put U(x0) = Ũ(x0).
5. Move from Far into Considered, all the Far points which are adjacent to x0.
6. Re-evaluate Ũ by using the scheme (12), for all the Considered points adjacent x0.
7. If the set C is not empty, return to item 4.

The complete proof of the convergence of the computed numerical solution toward the
viscosity solution is postponed to a following paper.
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a) b) c) d)

Fig. 1. a) original surface (groundtruth); b) image synthesized from a); c) surface reconstructed
by using the classical causality; d) surface reconstructed by our algorithm

a) b) c)

Fig. 2. a) vertical section of Fig.1-c); b) vertical section of Fig.1-d); c) vertical section of the
surface reconstructed by the iterative algorithm after three complete iterations

6 Numerical Experiments

We have implemented our method for the generic SFS Hamiltonian Hg (2). As a con-
sequence our algorithm applies to any modeling considered in [21,22].

Because of space and since the contributions of this paper concern mainly some nu-
merical improvements, here we illustrate our results only with the classical Rouy/Tourin
Hamiltonian HR/T (3). We also only deal with synthetic images; more exactly with the
classical example of the Mozarts face [32]. Moreover as the theory suggests [19], in our
experiments we assume that we know and we use the values of the solutions at all its
local minima.

Mainly, the differences between our new method and the previous FMMs are two
fold. 1) We propose a new causality principle (the updating order is related to the level
sets of u− ψ instead of the ones of u; u being the solution of the considered equation).
2) We propose also to use an approximation scheme (already described in [17]) which
is different from the previous ones proposed in the FMM literature. Here, we focus on
the improvement due to the change of the causality. Figure 1 shows: a) the original sur-
face; b) the image synthesized from (a) with a single far light source (l = (−0.3,−0.3);
see page 320) and by using an orthographic projection; c) the surface reconstructed by
our algorithm [our scheme + our causality]; d) the surface reconstructed by using the
classical causality [our scheme + replacing ψ by 0]. Let us note that due to the black
shadows, we are not able to completely recover the original surface. Nevertheless, the
improvement involves by the change of the causality is quite visible. To better show the
differences between the surfaces 1-c) and 1-d), we display vertical sections of them in
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Figures 2-a) and 2-b). In Figure 2, the red curves represent the sections of the computed
approximations and the green curve is the section of the groundtruth. In other respects,
Figure 2-c) displays a vertical section of the surface reconstructed by the corresponding
iterative algorithm [22,17] after three complete alternating raster scans similar to those
used in [9,29]. In this example, the number of pixels considered is around 20200. With
our FMM method, the computation of the solution requires around 40500 updates. With
the iterative version, around 76000 updates are required for computing an approxima-
tion of the solution with an error of the same order of magnitude. About computational
time, our FMM method returns this result after 6 seconds (computer: Intel Celeron
1.5GHz; Let us note that we do not have tried to optimize our code yet). The iterative
version requires approximatively the same computational time (7 seconds). Many more
numerical results and qualitative and quantitative comparison tests can be found in our
forthcoming associated papers [23]. Also, we postpone to [23] the comparisons of the
results obtained with Prados and Faugeras’s scheme with those obtained with the other
ones.

7 Conclusion

In this article, we revisit the classical “Fast Marching Methods” [30,25,26,8] and we
extend them to a wide class of HJ equations. In particular, our method can deal with HJB
equations with arbitrary signs cost functions when the previous methods just deal with
positive cost functions. Also, in the cases where the solution does not decrease along the
optimal trajectories, we correct the causality property by using a subsolution. Finally,
our method is generic and it applies indifferently to all the SFS equations obtained by
the most recent and relevant modelings of this problem [17].
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Abstract. Many problems in image analysis and computer vision in-
volving boundaries and regions can be cast in a variational formulation.
This means that m-surfaces, e.g. curves and surfaces, are determined as
minimizers of functionals using e.g. the variational level set method. In
this paper we consider such variational problems with constraints given
by functionals. We use the geometric interpretation of gradients for func-
tionals to construct gradient descent evolutions for these constrained
problems. The result is a generalization of the standard gradient projec-
tion method to an infinite-dimensional level set framework. The method
is illustrated with examples and the results are valid for surfaces of any
dimension.

1 Introduction

Variational formulations have been successfully used by many researchers to
solve a wide variety of problems within computer vision and image analysis.
Benefits of using variational formulations are among others; a solid mathematical
framework, well developed numerical techniques, and the fact that a variational
formulation clearly and unambiguously shows the type of solutions that are
sought.

From a variational formulation one can determine what the solutions look
like. If they cannot be computed directly from the Euler-Lagrange equations a
gradient descent procedure can be used, cf. [1]. This paper deals with gradi-
ent descent for variational problems involving dynamic m-dimensional surfaces
and interfaces with side conditions. The side conditions appear in the form of
constraints on the solutions. Constraints can appear in “finite” form such as
boundary conditions for curves and surfaces and in “infinite” form, defined by
functionals. Here the latter type is considered.

Variational problems with such constraints appear naturally in many vision
applications such as overlapping of regions in multi-phase segmentation [2,3] and
as obstacles for surface fitting problems [4].

This paper introduces mathematical techniques that give a geometric inter-
pretation and introduces an infinite-dimensional gradient projection method as
an extension of the finite-dimensional theory, cf. [5]. A projected gradient is
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introduced as the orthogonal projection on a manifold determined by the con-
straint functional and we derive the corresponding gradient descent procedure.
In doing so, we show that a gradient descent Lagrange method is in fact a pro-
jection. Furthermore, we give some illustrative examples and treat issues related
with practical implementations.

The paper is organized as follows; background material on finite-dimensional
constrained optimization, the level set method and infinite-dimensional gradient
descent is covered in Section 2. Our contributions are described in Sections 3
to 5. In Section 3 we derive the projected gradient on the constraint manifold
and in Section 4 we give some illustrative examples. Finally, we comment on the
practical implementation in Section 5.

2 Background

As a courtesy to the reader, the necessary background on finite dimensional
constrained optimization, the level set method, and the geometric gradient in-
terpretation for variational m-surface problems is briefly recalled here.

2.1 Gradient Projection for Finite Dimensional Problems

Suppose we are asked to find the minimum of f(x) subject to the side condition
g(x) = 0, where f, g : Rm+1 → R are a pair of differentiable functions. Set
N = {x ∈ Rm+1 : g(x) = 0} and assume for simplicity that ∇g(x) �= 0 for
all x ∈ N . Then N is a differentiable m-dimensional surface, by the implicit
function theorem, and the above minimization problem becomes that of finding
x∗ ∈ N such that

f(x∗) = min
x∈N

f(x). (1)

The classical method for solving such a problem is to use Lagrange multipliers:
If x∗ minimizes f on N , then there exists a constant λ∗ ∈ R such that

∇f(x∗)− λ∗∇g(x∗) = 0.

Thus, (x∗, λ∗) is to be found among the stationary points of the Lagrange func-
tion L(x, λ) = f(x)−λg(x). However, computing the stationary points of L(x, λ)
is generally a highly non-trivial matter, so in practice one tries to find x∗ directly
by using some kind of descent method.

Let us describe the construction of a gradient descent procedure for the
minimization problem (1). First, let x ∈ N and define the gradient ∇Nf(x)
of f on N at x ∈ N by

∇Nf(x) = ∇f(x)− ∇g(x) · ∇f(x)
‖∇g(x)‖2 ∇g(x), (2)

where v ·w denotes the usual scalar product between vectors v,w ∈ Rm+1, and
‖v‖ =

√
v · v is the corresponding norm. Notice that the N -gradient ∇Nf(x) is
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simply the orthogonal projection of the usual gradient ∇f(x) onto the tangent
space of N at x: TxN = {v ∈ Rm+1 : ∇g(x) · v = 0}, hence the term: the
gradient projection method, cf. Figure 1.

Next, given a point x0 ∈ N then the gradient descent motion for (1) is the
solution of the initial value problem:

ẋ(t) = −∇Nf(x(t)), x(0) = x0. (3)

If the limit x◦ = limt→∞ x(t) exists then ∇Nf(x◦) = 0, hence x◦ is a stationary
point of f ’s restriction to the manifold N . Hopefully the gradient descent motion
solves the minimization problem (1), i.e. x◦ = x∗, but x◦ may of course turn out
to be some other stationary point.

The purpose of this work is to generalize this procedure to variational prob-
lems for curves and surfaces, where both the objective function and the side
conditions are given by functionals.

∇
N
 f

∇ f

∇ g Tx N

Fig. 1. Projected gradient descent on an ellipsoid-shaped manifold defined as the set
N = {x ∈ Rm+1 : g(x) = 0}. The gradient is projected on the tangent space using the
gradient of the constraint, ∇g.

2.2 The Kinematics of Dynamic Surfaces

A regular m-surface in Rm+1 has codimension equal to one and can be repre-
sented implicitly as the zero set of a differentiable function φ : Rm+1 → R, the
level set function, as

Γ = {x : φ(x) = 0} . (4)

The sets Ω = {x : φ(x) < 0} and {x : φ(x) > 0} are called the inside and the
outside of Γ , respectively. Using this convention, the outward unit normal n and
the mean curvature κ of Γ are given by (c.f. [6])

n =
∇φ

|∇φ| and κ = ∇ · ∇φ

|∇φ| . (5)

The implicit representation introduced above can be used to define a dynamic
surface (or surface evolution), t → Γ (t), by adding a time dependence, φ =
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φ(x, t), to the level set function, where φ : Rm+1 × I → R is a sufficiently
differentiable function. The dynamic surface is then given by

t �→ Γ (t) := {x : φ(x, t) = 0} . (6)

Let us recall from [1] the notion of the normal velocity of the surface evolution (6).
Suppose a particle moves along with the dynamic surface Γ (t). If the motion of
the particle is given by the parameterized curve α : I → Rm+1 with α(0) = x0,
then the equality φ(α(t), t) = 0 holds identically at all times t. Differentiation
of this identity yields

α̇(0) · n = −∂φ(x0, 0)/∂t

|∇φ(x0, 0)| , (7)

where the left-hand side is the normal component of the velocity α̇(0) of the
particle at t = 0. This normal component is an intrinsic property of the evolution
since it does not depend on the choice of α or φ(x, t), cf. [1]. We can then define
the normal velocity of the evolution Γ (t) as the function

Γ̇ (t) = −∂φ(x, t)/∂t

|∇φ(x, t)| (x ∈ Γ (t)) . (8)

Using the notation v = v(Γ ) = −Γ̇ (t) we can rewrite this equation as

∂φ

∂t
= v|∇φ| , (9)

where we have dropped the dependence on x and t to simplify the notation. This
is the well-known level set equation which is the basis for the level set method,
introduced independently by [7] and [8] as a tool for evolving implicit surfaces.

2.3 Geometric Gradient Descent for Dynamic Surfaces

In this section we recall from [1] the construction of gradient descent evolutions
for the minimization of functionals E(Γ ) defined on manifolds of admissible m-
surfaces Γ . Here we are primarily concerned with functionals of the following
types

E◦(Γ ) =
∫

Γ

g(x) dσ or E•(Γ ) =
∫

Ω

g(x) dx , (10)

where Γ = ∂Ω is a closed m-surface, dσ the Euclidean surface measure, and
g : Rm+1 → R is a given weight function.

As in [1], let M denote the (pre-)manifold of admissible m-surfaces Γ . If
Γ ∈ M then the tangent space of M at Γ is the set TΓ M of all functions
v : Γ → R such that v correspond to the normal velocity of some (regular)
surface evolution through Γ . Each tangent space TΓ M of M is endowed with a
scalar product 〈·, ·〉Γ defined as the integral

〈v, w〉Γ =
∫

Γ

v(x)w(x) dσ (v, w ∈ TΓ M) . (11)
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If the norm of v ∈ TΓ M is defined by by ‖v‖Γ =
√
〈v, v〉Γ , then we have Schwarz’

inequality:
|〈v, w〉Γ | ≤ ‖v‖Γ ‖w‖Γ (v, w ∈ TΓM) . (12)

Now, consider a functional E : M → R and let Γ ∈ M be fixed. The
functional E is said to be Gâteaux-differentiable at Γ , if the derivative

dE(Γ )v =
d

dt
E(Γ (t))

∣∣
t=0 (13)

exists for every v ∈ TΓ M . Here Γ (t) is a surface evolution which satisfies Γ (0) =
Γ and Γ̇ (0) = v. The linear functional on the left hand side of (13) is called the
Gâteaux derivative (or the functional derivative) of E at Γ . There sometimes
exists a vector ∇E(Γ ) ∈ TΓ M such that the following identity holds for all
normal velocities v ∈ TΓ M :

dE(Γ )v = 〈∇E(Γ ), v〉Γ (Riesz) . (14)

If this is the case, then ∇E(Γ ) is called the gradient of E at Γ , and it is uniquely
determined by the property (14)1.

The gradient descent for the variational problem E(Γ ∗) = minΓ E(Γ ) is,
analogous to (3), given by the solution of the following initial value problem:

Γ̇ (t) = −∇E(Γ (t)); Γ (0) = Γ0 , (15)

where Γ0 is the initial m-surface.
As an example we apply this procedure to the two functionals in (10), and

derive the corresponding gradient descent evolutions in the level set framework.
First we notice that the Gâteaux derivatives of these functionals are dE◦(Γ )v =∫

Γ (∇g · n + gκ)v dσ and dE•(Γ )v =
∫

Γ gv dσ, respectively. The first of these
derivatives, which is the classical geodesic active contours, is derived in [1,9,10],
and the second derivative can be found in e.g. [1,11]. Using (14) we see that

∇E◦(Γ ) = ∇g · n + gκ and ∇E•(Γ ) = g . (16)

Using the formula (8) for the normal velocity it follows from (15) that the gra-
dient descent evolutions for the minimization of E◦ and E• are

∂φ

∂t
= (∇g · n + gκ)|∇φ| and

∂φ

∂t
= g|∇φ| , (17)

respectively, where the initial level set function φ0(x) = φ(x, 0) must be specified.

1 It would be more correct to use the notation ∇ME for the gradient of E, as it is
actually the gradient of E on the manifold M of admissible m-surfaces. However,
always insisting on correct names ultimately leads to cumbersome notation, and
since functionals on M are always denoted by upper case letters, we trust the reader
understands that ∇E means the (functional) gradient in the infinite-dimensional
setting of surfaces.
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3 Gradient Projection for Variational Surface Problems

In this section we show how the notion of a functional gradient, defined in
Section 2.3, can be used to give a geometric interpretation of descent evolutions
for variational level set problems with constraints. Let F, G : M → R be two
Gâteaux-differentiable functionals of either of the forms in (10). Define N as the
sub-manifold of admissible m-surfaces Γ given by

N = {Γ ∈ M : G(Γ ) = 0} ,

and consider the constrained variational problem of finding Γ ∗ ∈ N such that

F (Γ ∗) = min
Γ∈N

F (Γ ) . (18)

Assume that ∇G �= 0 on N . If Γ ∗ solves (18) then, according to the Lagrange
multiplier method, there exists a number λ∗ ∈ R such that the pair (Γ ∗, λ∗) is
a stationary point of the Lagrange function L(Γ, λ) = F (Γ ) − λG(Γ ), that is,
(Γ ∗, λ∗) solves the following system of equations:⎧⎪⎨⎪⎩

∇L(Γ, λ) = ∇F (Γ )− λ∇G(Γ ) = 0

∂L

∂λ
L(Γ, λ) = G(Γ ) = 0 .

(19)

In order to find (Γ ∗, λ∗) we construct a gradient descent motion t �→ (Γ (t), λ(t))
for the Lagrange function L in such a way that the constraint ∂L/∂λ = 0 is
enforced at all times. This means that t → Γ (t) solves the initial value problem:

Γ̇ (t) = −∇L(Γ (t), λ(t)), Γ (0) = Γ0 , (20)

where it remains to determine the value of λ = λ(t) in (20). To do this, we
differentiate the identity G(Γ (t)) = 0, in the second equation of the system (19),

0 =
d

dt
G(Γ ) = dG(Γ )Γ̇ = −〈∇G(Γ ),∇L(Γ, λ)〉Γ

= −〈∇G(Γ ),∇F (Γ ) − λ∇G(Γ )〉Γ

then we see that
λ =

〈∇F (Γ ),∇G(Γ )〉Γ
‖∇G(Γ )‖2Γ

.

It follows from this calculation that the right-hand side of (20) is ∇L(Γ, λ) =
∇NF (Γ ), where

∇NF (Γ ) := ∇F (Γ )− 〈∇F (Γ ),∇G(Γ )〉Γ
‖∇G(Γ )‖2Γ

∇G(Γ ) (21)

is the N -gradient of F at Γ ∈ N , which is defined as the orthogonal projection
(in TΓ M) of ∇F onto the tangent space TΓ N = {v ∈ TΓM : 〈∇G(Γ ), v〉Γ = 0},
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precisely as in the finite dimensional case in Section 2.1. In other words, the
gradient for the Lagrange function is a projection. In the level set formulation,
the N -gradient descent motion for (18) becomes

∂φ

∂t
= ∇NF |∇φ| , (22)

where ∇NF is given by (21). This result is easily generalized to variational
problems with several constraints.

Proposition 1. Let F, G1, . . . , Gn : M → R be Gâteaux differentiable function-
als, and assume that the functional gradients ∇G1(Γ ), . . . ,∇Gn(Γ ) are linearly
independent on N = {Γ ∈ M : G1(Γ ) = · · · = Gn(Γ ) = 0}. Then the gradient
descent motion for the minimization problem (18) is the solution of the initial
value problem:

Γ̇ (t) = −∇NF (Γ (t)), Γ (0) = Γ0 . (23)

Here the N -gradient ∇NF is given by

∇NF (Γ ) = ∇F (Γ )−
n∑

i=1

λi∇Gi(Γ ) ,

where λ = (λ1, . . . , λn) solves the following system of equations:
n∑

j=1

λj〈∇Gj ,∇Gi〉Γ = 〈∇F,∇Gi〉Γ (i = 1, . . . , n) . (24)

That is, ∇NF (Γ ) is the orthogonal projection of F onto the tangent space TΓ N .

Proof. The dynamic surface defined by (23) is the gradient descent motion for
the Lagrange function L(Γ, λ) = F (Γ )−

∑n
i=1 λiGi(Γ ) which satisfies the con-

ditions ∂L/∂λi(Γ (t)) = 0 for i = 1, . . . , n. The latter implies that the equalities
Gi(Γ (t)) = 0, i = 1, . . . , n hold for all t. Differentiation of these identities gives
the system (24) for the Lagrange multipliers, which is solvable, by the assumption
on the functional gradients ∇G1, . . . ,∇Gn. The details are left to the reader.

4 Examples

In this section we will show some examples of how to apply the geometric analysis
above. First we use a classical result from differential geometry as a pedagogical
example to illustrate the theory in Section 3, then we give a practical case where
such analysis can be used for surface fitting to 3D data.

4.1 Illustrative Example: The Isoperimetric Problem

Let us define the length and area functionals for a closed planar curve as

L(Γ ) =
∫

Γ

dσ and A(Γ ) =
∫

Ω

dx , (25)



A Gradient Descent Procedure for Variational Dynamic Surface Problems 339

where, as above, Ω is the interior of Γ . Since in both cases these expressions
correspond to g(x) = 1 in (10), the gradients are simply

∇L = κ and ∇A = 1 , (26)

from (16).
The isoperimetric problem (IP) is to find the curve with a fixed length that

encloses the largest area, or equivalently, find the shortest curve which encloses a
fixed area. If we decide to use the second formulation we can define the manifold
satisfying the constraint as

N = {Γ : A(Γ ) = A0} ,

for some constant A0. The problem is then formulated as

IP : min
Γ∈N

L(Γ ) , (27)

and the projected gradient is simply

∇NL = ∇L− 〈∇L,∇A〉Γ
||∇A||2Γ

∇A = κ− 〈κ, 1〉Γ
||1||2Γ

1 .

Remark: For a simple closed curve in the plane it is well known that 〈κ, 1〉Γ =
2π, cf. [12–p.37]. Also, the norm in the denominator is equal to the curve length,
||1||2Γ =

∫
Γ dσ = L(Γ ). Using Schwarz’ inequality (12) it is clear that the con-

straints L(Γ ) = L0 and A(Γ ) = A0 always have nonzero gradient because
2π = 〈κ, 1〉Γ ≤ ||κ||Γ ||1||Γ = ||∇L||Γ ||∇A||Γ .

Using the projected gradient above, we can now state and prove the following
classical result, which tells us what the extremals are.

Proposition 2. For a simple closed curve in the plane

∇NL(Γ ) = 0 ⇔ Γ = circle .

Proof. Recall that a circle with radius r has positive constant curvature κ = 1/r.
If Γ is a circle with radius r, then

∇NL = κ− 〈κ, 1〉Γ
〈1, 1〉Γ

=
1
r
− 1

r

〈1, 1〉Γ
〈1, 1〉Γ

= 0 .

Conversely, if ∇NL = 0, then

∇NL = κ− 2π

L(Γ )
= 0 ,

which implies κ = 2π/L(Γ ) = 1/r > 0, so Γ is a circle.

Figure 2 illustrates two examples of the projected gradient descent

∂φ

∂t
= (κ− 2π

L(Γ )
)|∇φ| , (28)

for the problem (27).
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Fig. 2. Curve evolution for projected gradient descent of the isoperimetric problem.
From left to right: initial shape, after 100 iterations, after 400 iterations and final shape
for two randomly created planar curves. The value of the function φ is indicated in
grayscale.

4.2 Practical Example: Visibility

This example concerns evolving surfaces in a surface fitting scheme such that
they never violate visibility constraints cf. [4]. Some form of 3D data, e.g. unor-
ganized points, is recovered from a sequence of images e.g. using structure from
motion [13]. The goal is then to fit a surface to this data as a part of the scene
reconstruction procedure. To do this the method from [14] can be used. In this
case the functional is

F (Γ ) =
∫

Γ

d(x) dσ , (29)

where d(x) : Rm+1 → R is the distance potential to the data set. The gradient
is ∇F = ∇d · n + dκ from (16).

Let W ⊂ R3 denote the set corresponding to the forbidden regions in space
determined from observations in the images. The following functional,

G(Γ ) =
∫

Ω

χW dx , (30)

where Ω is the interior of Γ and χW is a characteristic function for the set W ,
was used in [4] to detect if the visibility condition is violated. The problem of
evolving Γ such that no seen parts of the 3D data are occluded by the surface
during evolution, leads to a variational problem of minimizing (29) under the
constraint G(Γ ) = 0.

The gradient of the constraint functional is ∇G = χW , by (16). This means
that the projected gradient is

∇NF = ∇d · n + dκ− 〈∇d · n + dκ, χW 〉Γ
||χW ||2Γ

χW ,

and the gradient descent evolution is



A Gradient Descent Procedure for Variational Dynamic Surface Problems 341

Fig. 3. Reconstruction from the Oxford dinosaur sequence. (top) Sample images recov-
ered 3D points. (bottom) Four views of the reconstructed surface, using the visibility
constraint.

∂φ

∂t
= (∇d · n + dκ− 〈∇d · n + dκ, χW 〉Γ

||χW ||2Γ
χW )|∇φ| .

An example2 reconstruction is shown in Figure 3 where the forbidden set W is
the complement of the visual hull.

5 Implementation Issues

This section deals with some practical considerations for implementing a pro-
jected gradient descent evolution, as described in Sections 3 and 4. There are
some issues related to the fact that at the implementation stage we use finite
resolution and numerical approximations.

When computing the projected gradient, one needs to compute surface (and
volume) integrals such as the curve length L(Γ ) for the isoperimetric problem.
This is not trivial to do in the implicit level set representation. Sometimes it
is enough to compute these values with approximations using the Dirac and
Heaviside functions as in e.g. [3,15]. If more accurate values are needed, methods
like the marching cubes algorithm [16] can be used. Whatever the choice, there
will be small errors in these computed values.

Another issue is that of satisfying the constraints. Only the gradient of the
constraint functional appear in the evolution, not the value. In the isoperimetric
example, the value of A(Γ ) never appear in the evolution equation (28). During
the decent, finite step lengths and numerical errors in the calculations of the
curve length L(Γ ) may introduce a “drift” in the value of A(Γ ), so that the
constraint G(Γ ) = A(Γ )−A0 = 0 fails to hold after a while. One way to counter
2 The example is from [4].
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this drift is to add the gradient of a second order term, G(Γ )2/2, to the projected
gradient ∇NF , such that the evolution becomes Γ̇ (t) = −v(Γ ) with

v(Γ ) = ∇NF + G∇G . (31)

For the isoperimetric problem (27) this is

v(Γ ) = ∇NL + (A(Γ )−A0)1 . (32)

The extra term in v(Γ ) is zero if the constraint G(Γ ) = 0 holds, otherwise this
term will try to restore the constraint.

Adding this term to the N -gradient of L does not change the extremals. In
fact, the stationary points of the new augmented evolution are the same as for
the one with v(Γ ) = ∇NL.

Proposition 3. v(Γ ) = 0 in (32) if and only if G(Γ ) = A(Γ ) − A0 = 0 and
∇NL(Γ ) = 0.

Proof. If v(Γ ) = 0 then pairing with ∇G = 1 yields

0 = 〈v(Γ ), 1〉Γ = 〈κ− 2π

L(Γ )
+ (A(Γ )−A0)1, 1〉Γ

= 〈κ− 2π

L(Γ )
, 1〉Γ + (A(Γ )−A0)〈1, 1〉Γ = 0 + (A(Γ )−A0)L(Γ ) .

Since L(Γ ) �= 0 this implies that G(Γ ) = A(Γ ) − A0 = 0, and consequently
∇NL(Γ ) = 0 by (32). In particular, Γ is a circle (by Proposition 2). The other
direction is trivial.

This result is in fact true for the general case (31). The proof is a straight-forward
adaption of the proof of Proposition 3 and is left to the reader.

6 Conclusions

In this paper we introduced a geometric infinite-dimensional gradient projection
method for variational problems with constraints, as an extension of the finite-
dimensional theory. Using a scalar product on the manifold of admissible m-
surfaces we showed that gradient descent for the Lagrange method is equivalent
to an orthogonal projection on the tangent space of the constraint manifold. We
gave examples of how to use this theory in practice together with some useful
ideas for implementation. This includes a way of stabilizing the evolution by
augmenting the normal velocity. We also prove that this modified evolution still
solves the original problem.

References

1. Solem, J.E., Overgaard, N.: A geometric formulation of gradient descent for vari-
ational problems with moving surfaces. In: The 5th International Conference on
Scale Space and PDE methods in Computer Vision, Scale Space 2005, Hofgeismar,
Germany, Springer (2005) 419–430



A Gradient Descent Procedure for Variational Dynamic Surface Problems 343

2. Damgaard Pedersen, U., Fogh Olsen, O., Holm Olsen, N.: A multiphase variational
level set approach for modelling human embryos. In: IEEE Proc. Workshop on
Variational, Geometric and Level Set Methods in Computer Vision. (2003) 25–32

3. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to
multiphase motion. J. Computational Physics 127 (1996) 179–195

4. Solem, J.E., Kahl, F., Heyden, A.: Visibility constrained surface evolution. In:
International Conference on Computer Vision and Pattern Recognition, San Diego,
CA. (2005)

5. Rosen, J.: The gradient projection method for nonlinear programming: Part II,
nonlinear constraints. J. Society for Industrial and Applied Mathematics 9 (1961)
514–532

6. Thorpe, J.A.: Elementary Topics in Differential Geometry. Springer-Verlag (1985)
7. Dervieux, A., Thomasset, F.: A finite element method for the simulation of

Rayleigh–Taylor instability. In Rautman, R., ed.: Approximation Methods for
Navier–Stokes Problems. Volume 771 of Lecture Notes in Mathematics. Springer,
Berlin (1979) 145–158

8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics
79 (1988) 12–49

9. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Journal of
Computer Vision (1997)

10. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
19 (1997) 394–398

11. Paragios, N., Deriche, R.: Geodesic active regions: A new paradigm to deal with
frame partition problems in computer vision. International Journal of Visual Com-
munication and Image Representation (2000)

12. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall (1976)
13. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-

bridge University Press (2000)
14. Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape

reconstruction from unorganized points using a variational level set method. In:
Computer Vision and Image Understanding. (2000) 295–319

15. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces.
Springer Verlag (2002)

16. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface reconstruc-
tion algorithm. Computer Graphics (Siggraph’87 ) 21 (1987) 163–169



Regularization of Mappings Between Implicit
Manifolds of Arbitrary Dimension and

Codimension

David Shafrir1, Nir A. Sochen1, and Rachid Deriche2

1 University of Tel-Aviv, Ramat-Aviv, Tel-Aviv 69978, Israel
{davidsha, sochen}@post.tau.ac.il

2 Odysee project, INRIA Sophia-Antipolis, 2004 Route des Lucioles,
06902 Sophia-Antipolis CEDEX, France

Rachid.Deriche@sophia.inria.fr

Abstract. We study in this paper the problem of regularization of map-
pings between manifolds of arbitrary dimension and codimension using
variational methods. This is of interest in various applications such as
diffusion tensor imaging and EEG processing on the cortex. We consider
the cases where the source and target manifold are represented implic-
itly, using multiple level set functions, or explicitly, as functions of the
spatial coordinates. We derive the general implicit differential operators,
and show how they can be used to generalize previous results concerning
the Beltrami flow and other similar flows.

As examples, We show how these results can be used to regularize
gray level and color images on manifolds, and to regularize tangent vector
fields and direction fields on manifolds.

1 Introduction

In many application the data of interest is defined on a manifold. Examples for
this exist in areas like medical imaging, computer graphics and computational
physics. In medical imaging, the data may be attached to a tissue, as in the case
of cortex data processing. In computer graphics it appears in texture smoothing
and synthesis, and in surface parameterization.

In much of the cases the data is noisy and needs to be regularized. Therefore
there is a need to perform the regularization intrinsically on the manifold. The
use of analytical methods, such as calculus of variations, and of efficient numer-
ical schemes, such as the level-set technique, give rise to efficient and robust
solutions for this task.

Let us consider first the more standard flat case. One of the main approaches
for regularization is based on p-harmonic maps [1], in which the smoothness
criterion of the data is based on the Lp norm of the data gradients.

The two most popular variants of harmonic maps are isotropic diffusion (p =
2) and Total Variation (p = 1). The isotropic diffusion, which has been studied
and used extensively, proves to have major drawbacks when dealing with data
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that has discontinuities. As it is essentially linear, it is not edge preserving and
blurs the data. The Total Variation denoising, first introduced by Rudin et al.
[2], does preserve edges, but causes the infamous stair-casing affect and loss of
texture.

Another problem regarding p-harmonic maps (and their generalized φ for-
mulation [3]) is its extension to vector valued data. The problem is that the
diffusion is done separately in each channel, and there is no coupling between
the different channels. This may lead to loss of correlation between the chan-
nels. For example, in color images, chromaticity is not well preserved and color
artifacts are observed [4].

The second approach for denoising, the Beltrami framework [5,6,7] is based on
looking at the mapping to the data as a manifold in the spatial-feature space. The
smoothing process is done by the evolution of that manifold under the volume
minimizing flow. The edge-preserving property comes from the fact that only
the feature space coordinates are modified. The Beltrami flow has been shown to
interpolate (for scalar valued data) between the Total Variation diffusion and the
isotropic diffusion. This allows more control of the tradeoff between the benefits
and shortcomings of the two methods. Also, by representing a vector-valued
mapping as single geometrical object, this method creates a strong coupling
between the different channels, and therefore seems to be more natural for vector
valued data.

1.1 The Extension to Non-flat Manifolds

The implicit level-set representation of manifolds has become a viable alterna-
tive to triangulated surfaces for solving variational problems [8,9,10]. It is much
more natural for numerical computations, since the numerical behavior can be
analyzed using standard methods to guarantee accuracy and robustness. The im-
plementation is also much simpler and elegant, and there is no need to address
the problems that arise due to the irregular structure of triangulated meshes.
Harmonic maps have been recently extended for denoising data on implicit man-
ifolds [10,11] defined by single level-set function (codimension 1).

Motivated by the need to denoise color images on surfaces, the case where the
data is constrained to be on sphere was also studied from a level-set perspective
in [12,13]. It was later extended to the case where the data is constrained to
be on a more general target manifold [14]. While it has impressive results it
still suffers from the same problems that are encountered in the flat domain
situations: Either the over smoothness in the isotropic diffusion case, or the
stair-case affect in the Total Variation based diffusion. The Beltrami framework
has been formulated via an explicit parameterizations of the domain and target
manifolds. Non-flat target manifolds were studied by this approach in [15,16]. It
was mostly studied for flat domain manifolds, and only recently was studied for
gray-level images on implicit surfaces [17].

In this paper, we explore the geometry of multiple level set functions, and
show how it can be used to generalize pervious results to their full extent. We
study the general problem of regularization of vector-valued data on a manifold
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of arbitrary dimension and codimension, defined implicitly or explicitly, as a
function of the spatial coordinates. This extension is of particular interest in
the Beltrami case because of its advantages in higher dimensional data. We also
study the case where the data is constrained to be on a manifold of arbitrary
dimension and codimension. By this we show the general approach for solving the
problem of regularization of mappings between general manifolds, represented
implicitly or explicitly. We show, as examples, how the implicit Beltrami flow
can be used to regularize gray level and color images over manifolds, and to
regularize tangent and directional vector fields on manifolds.

2 The Implicit Beltrami Flow

We first consider the case of the Beltrami flow, from a variational approach.
Let M be a n − k dimensional manifold embedded in IRn, represented by the
intersection the zero level-sets of k implicit functions (constraints). Let (f) :
IRn → IRm be the smooth extension to all of IRn of the mapping between the
domain manifold to the vector data values. We look at the graph of the mapping,
embedded in IRm+n, and we describe it by an additional set of m constraints,
describing the mapping. For example, the mapping y = g(x) is transformed into
the constraint y − g(x) = 0. Thus the graph is described by a set of k + m
constraints. The regularization is performed by changing the mapping so that
the graph manifold evolves under the volume minimization flow.

Let us consider the volume minimization flow from an implicit approach:
Given a set of constraints, we wish to find the variation of the volume of the
solution manifold with respect to the constraints functions. For start, we need
to express the volume of the solution as a function of the set of constraints. We
have the following theorem:

Proposition 1. Let {fi}k
i=1 be k functions from IRn to IR, and let G be a n× k

matrix with the i’th column equal to ∇fi, and assume that it is of maximal rank.
Let S be the intersection manifold of the function’s zero level sets:

S = {−→x |fi(−→x ) = 0 : i = 1, . . . , k} . (1)

Then the volume of S is equal to:

V ol(S) =
∫

IRn

∏
i

δ(fi(x))
√

det(GT G) dx . (2)

Where δ is Dirac’s delta function.

The matrix G is simply the Jacobian matrix of the transformation defined by
the k implicit functions, and this is how we refer to it.

In the next sections we will make use of the projection operator. Let G be a
n× k matrix. The projection operator PG to the orthogonal complement of the
column space of G is equal to:

PG = I −G(GT G)−1GT . (3)
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The reason this operator is useful in our context is because of the following
fact: Let f1, . . . , fk are k scalar functions in IRn, and let G be the corresponding
Jacobian matrix at point x. Then the projection operator PG projects a vector
v onto the intersection manifold of the level sets of the functions f1, . . . , fk that
passes through x. This follows immediately from the fact the gradient of the
function at point x is orthogonal to the level set of the function that passes
through that point. Using this observation and some additional computational
effort we derive in the appendix the gradient descent equation for the volume
functional: Let G be the gradient matrix of f1, . . . , fk, and let G′ be the matrix
G without the row ∇fi. Then

dfi

dt
=

1√
det(GT G)

∇ ·
(√

det(GT G)PG′∇fi

‖PG′∇fi‖2

)
. (4)

Let the manifold M , embedded in IRn, be the intersection of the zero level
sets of the functions ψ1, . . . , ψk, and let u1, . . . , um be the feature functions. Let
{x1, . . . , xn, y1, . . . , ym} be the coordinate system of the combined spatial-feature
space.

The graph of the mappings is described by the following set of implicit func-
tions:

f1 = y1 − β u1(x1, . . . , xn) = 0
...
fm = ym − β um(x1, . . . , xn) = 0
ψ1(x1, . . . , xn) = 0
...
ψk(x1, . . . , xn) = 0 .

Where β is a parameter for the embedding. Let G be the Jacobian matrix of
the above implicit functions, and G′ be G without the column ∇fi. We can use
equation (4) to derive the gradient descent equation of ui:

dui

dt
=

1√
det(GT G)

∇ ·
( √

det(G′T G′) PG′∇fi

−β‖PG′∇fi‖

)
. (5)

3 The Geometry of Multiple Level-Set Functions

In this section we will show a different derivation of the flow equations by deriving
the implicit differential operators in the situation of multiple level set functions.

We look at a set of k implicit functions f1, . . . , fk in IRn. The k functions
define a transformation F : IRn → IRk, and let G the Jacobian of this transfor-
mation. We assume that G is of maximal rank. Let p be a point in IRn and let
S be the intersection of level sets that passes through it:

S = {x| fi(x) = fi(p) i = 1, . . . , k} . (6)
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The tangent space TpIRn at p can be decomposed into 2 linear subspaces: The
tangent space TpS of S at p and its orthogonal complement T⊥

p S. The differential
transformation df restricted to T⊥

p S is one to one, so the transformation F
induces a metric on T⊥

p S which is the pullback of the Euclidean metric by F .
We consider the case where the metric on TpS is simply the Euclidean metric.
The combination of the two restrictions defines a metric g on IRn.

This is the natural metric induced by the choice of the implicit functions, In
which the level sets of the functions looks locally equally spaced and orthogonal.
In this metric the length of the tangent vector ds is:

‖ds‖2 = ‖PG(ds)‖2 +
∑

i

(dfi(ds))2 = ‖PG(ds)‖2 +
∑

i

(∇ fi · ds)2 . (7)

The volume element of this metric is the the volume element of the transforma-
tion F restricted to T⊥

p S, which is g =
√

det(GT G) .
It is interesting to note that this metric coincides with the usual Euclidean

metric when the functions are distance fields and the level sets of the different
functions are orthogonal at every point. In this case G is an orthogonal matrix.
Since we are interested in the restriction of this metric to S, vectors on the
tangent space should be first projected to T⊥

p S. This metric can be used to
compute the implicit differential operators on S.

3.1 The Intrinsic Differential Operators

The intrinsic gradient is computed by simply projecting it on S. Since the metric
on the tangent space is Euclidean, the gradient is simply

∇gf = PG∇f . (8)

The divergence operator with respect to this metric is:

∇g · (V ) =
1
√

g
∇ · (√gPGV ) . (9)

We combine the last 2 results to calculate the Laplace-Beltrami operator of
a scalar function h:

Δgh =
1
√

g
∇ · (√gPG∇h) . (10)

The Laplace-Beltrami operator can be used to derive the Beltrami flow. We
will use the same notation as defined in (5).

The Beltrami flow for the function ui is simply the Laplace-Beltrami operator
of this function on the graph manifold [5]. We extend the function ui(x1, . . . , un)
to be a function of Rn+m by the equation ui = − yi

β .

dui

dt
= Δgui =

1
√

g
∇ · (√gPG∇ui) =

1
−β

√
g
∇ · (√gPGei) . (11)
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Where (e1, . . . , em) is the last m vectors in natural basis of IRn+m, which span
the feature subspace. It is easy to show that this equation is equivalent to (5).

We can use the implicit operators to extend any other flow equation to the
case of multiple level set functions. For example, in the case of p-Harmonic maps,
Let G be the Jacobian matrix of the implicit functions defining the manifold.
Then:

vt = ∇g · (
∇gv

‖∇gv‖2−p
) =

1
√

g
∇ ·

( √
g PG∇v

‖PG∇v‖2−p

)
. (12)

This is a generalization of the single level-set function case in [10].

3.2 Non-flat Color Images Regularization

We consider smoothing a color image defined on a surface. The domain manifold
embedded in IR3 is specified by an implicit function ψ(x, y, z) = 0, and let (r, g, b)
be the coordinate system of the feature space. Let u1, u2, u3 be the 3 function of
the red, green and blue channels. Their embedding in IR6 is:

r = β u1(x, y, z)
g = β u2(x, y, z)
b = β u3(x, y, z) .

Therefore the set of constraints describing the graph is:

f1 = r − β u1(x, y, z) = 0
f2 = g − β u2(x, y, z) = 0
f3 = b− β u3(x, y, z) = 0
f4 = ψ(x, y, z) = 0 .

We can now use (5) to calculate the variation of the graph surface are with
respect to u1, u2 and u3. Let G be the Jacobian matrix corresponding to the
functions f1, . . . , f4

G =

⎛⎜⎜⎝
−β∇u1 1 0 0
−β∇u2 0 1 0
−β∇u3 0 0 1
∇ψ 0 0 0

⎞⎟⎟⎠
T

where ∇ is the gradient operator with respect to the spatial-coordinates (x, y, z).
The G′ matrix is the matrix G without the column ∇fi. Using (5) we get the
gradient descent equation:

dui

dt
=

1
√

g
∇ ·

(√
g PG′∇ui

‖PG′∇fi‖2

)
. (13)

Where the divergence is on the spatial coordinates only. The well-posedeness
and extremum principle for this type of flow are discussed in [18,19].
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4 Constrained Regularization

In constrained regularization, the feature space has a shape of a general manifold,
which can depend or not depend on the spatial coordinates. Just like the domain
manifold, we represent it implicitly by a set of implicit functions h1, . . . , hl.
Explicit constraints of the form w = f(x) can be transformed to the implicit
constraint by h(x, w) = w − f(x) = 0.

We calculate the gradient descent equation using the following two steps
process: We first calculate the unconstrained variation, and then enforce the
constraints by projecting it to the tangent space of the constraints manifold
(which can be point dependant). This method is based on the gradient projection
method due to Rosen [20]. It has been also been used to some extent in [14]. The
projection is performed by calculating the gradients matrix C of the functions
h1, . . . , hl and using projection operator PC of (3). Alternatively, a series of
projections can be used, as explained in Sect. 5.

4.1 Explicit/Implicit Constraints

Although we transform both explicit and implicit constraints into implicit func-
tions, there is a difference in the actual implementation of the two cases. Let
the feature space be of dimension m and let h1, . . . , hl be the constraints. If the
constraints are given explicitly, It is possible to hold only m − l of the coordi-
nates, and calculate the other from them. The projected gradient descent step
can be used to update these coordinates only, and by this we ensure that the
data values are always on the constraining manifold.

A specific coordinate system may not cover the whole feature space in a
numerically stable way, so there might be a need to switch coordinate systems
for different regions [7,16]. When the constraints are given implicitly, all the
coordinate must be kept. Due to numerical errors, the coordinates values may
be taken out of the manifold during the evolution. Therefore there is a need to
project the values back onto the manifold after each iteration, and this can be
done using the Newton-Raphson method.

4.2 Regularization of Tangent Vector Fields

We consider regularization of tangent vector fields as an example to constrained
regularization (see [10,21] for other approaches). Let M be a manifold embedded
in IRn, and let ν(x) be a tangent vector field of M . We look at ν(x) as an n
dimensional vector field, and therefore the graph of the mapping between the
manifold to the vector field can be embedded in IR2n. We can use, as before,
the Beltrami flow to smooth that graph, but with an additional constraint - we
should keep the vector field tangent to the manifold.

As an example, we consider a vector filed on a surface in IR3, which is de-
scribed by the implicit function ψ(x, y, z). The vector field coordinates (u, v, w)
are specified using the functions ν1(x, y, z), ν2(x, y, z), ν3(x, y, z) which are the
extension of ν to all of IR3. The gradient descent step ũt of the unconstrained
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version is exactly the same as in the case of color images. The gradient of the
single constraint on the feature space is simply ∇ψ(x, y, z), as it is normal to
the tangent plane in the point (x, y, z). Therefore the gradient descent equation
is:

ut = P∇ψũt = ũt −
ũt · ∇ψ

‖∇ψ‖2 . (14)

For direction fields, the vector is constrained to be of a unit norm, and therefore
there is an additional constraint:

ν1(x, y, z)2 + ν2(x, y, z)2 + ν3(x, y, z)2 = 1 . (15)

The feature space constraints matrix is:

C =
(

∇ψ
2 ν1 2 ν2 2 ν3

)T

And the gradient descent equation is therefore:

ut = PC(ũt) . (16)

Where ũt is the unconstrained gradient descent step.

5 Implementation Details

In order to reduce time and space complexity when working with manifolds of
high dimension and codimension, the local level set method [22,23] can be used.
This way solving PDE’s on manifolds of high codimension becomes traceable. It
is important to notice, however, that in the case of the implicit Beltrami flow,
although the graph manifold in embedded in Rm+n, the actual computations
are performed on the original n-dimensional space.

When working in higher dimensions, calculating the projection operator and
the determinants can be quite cumbersome. There is however a way to calculate
both these values in an iterative way. We use the Gram-Shmidt process, and we
utilize the following two properties of it:

Lemma 1. Let u1, . . . , uk be k vectors in IRn (n ≥ k) and let v1, . . . , vk be the
k vectors that are the result of applying the Gram-Shmidt process on u1, . . . , uk.
We mark by V the matrix whose columns are v1, . . . , vk and by U the matrix
whose columns are u1, . . . , uk. Then:

1. det(UT U) = det(V T V ) =
∏

i(‖vi‖).
2. vi = PL(ui), where L is the matrix whose columns are u1, . . . , ui−1 .

We can use these facts to calculate
√

det(GT G) and PG′(ui) by ordering the
vectors {u1, . . . , uk} so that ui is last. Using The result of the Gram- Schmidt
process, vk is the needed projected vector, and the determinant can be computed
by multiplying the lengths of the resultant vectors.
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(a) Original image (b) β = 1.4

(c) Original image (d) β = 5

(e) Original vector field (f) β = 6

Fig. 1. Color images and vector fields on surfaces

6 Experimental Results

We implemented the color image and vector field regularization flows in Matlab.
For color images on a surface, we created a three-dimensional level-set matrix
for the surface, and three matrices to hold the red, green and blue channels.
We tested the regularization for various values of β. In Fig. 1 we see the baboon
image projected on the teapot, to which we added Gaussian noise. We used a low
β value - β = 0.5 for the smoothing process, and we can see that the resultant
image in Fig. 1 is somewhat over smoothed. This is expected since for β → 0,
(5) behaves like isotropic diffusion.

In Fig. 1 we added Gaussian noise to the brain image, and used a higher β
value of 6 for the smoothing. We can see in Fig. 1 that the edges are preserved.
This stems from the fact that in the case of scalar functions, the Beltrami flow
behaves like the Total Variation flow when β →∞. For vector data, the Beltrami
flow aligns the channels gradients so that edges are preserved.

Lastly, we created a piecewise smooth vector field on the half sphere. It
has a marked discontinuity in the middle, where the direction of the vectors
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jumps sharply. We added Gaussian noise to the vector field, and used β = 6
for the regularization. We can see in Fig. 1 that indeed the vector field is nicely
regularized while the discontinuity is preserved.

7 Summary and Conclusions

In this article we derived the Beltrami flow from an implicit approach, where
we modeled the domain manifold, the mapping and the target manifold using a
set of constraints. This enabled us to extend the Beltrami framework to implicit
manifolds that are given as an intersection of multiple level-sets. The resultant
framework turns out to be very simple and easy to implement. It also enables
to mix explicit and implicit constraints in a straightforward way.

Among the advantages of the Beltrami flow are its natural extension to vector
valued data, and the ability to control the edge-preserving behavior tuning the
β parameter. We have also shown how to deal with the case of arbitrary codi-
mension of the domain and target manifolds, and this general technique can also
be used in harmonic maps and related flows. Future research directions include
applications to medical data processing and computer graphics, comparing the
Beltrami approach to the more standard ones.
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Appendix

We will need the following lemma for the volume variation calculation:

Lemma 2. Let G be a n× k matrix, with the vector (v) = (x1, . . . , xn) of vari-
ables in the first column and the other columns constant. Let g =

√
det(GT G).

Let G′ be the matrix G without the vector (v). Then

∇g =

√
det(GT G) PG′(v)
‖PG′(v)‖2 . (17)

Where PG′ is the projection operator to the orthogonal complement of the space
spanned by the vectors of G′.

Let u1, . . . , uk, v be k + 1 implicit function in Rn, and let G be the Jacobian
matrix of these functions. The volume of their zero level sets intersection is:

V ol(S) =
∫

IRn

Πiδ(ui(x)) δ(v)
√

det(GT G) dx (18)
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Our goal is to calculate the variation of the volume functional with respect to
the function v. Let G′ be the matrix G without the column ∇v. Let S′ be
the intersection manifold of the function u1, . . . , uk, and PG′ be the projection
operator to it.

d

dt
V ol(S)(v + t μ) =

∫
IRn

δ′(v)Πiδ(ui)
√

det(GT G)μ (19)

+
∫

IRn

Πiδ(ui)δ(v)

√
det(GT G)PG′∇v

‖PG′∇v‖2 ∇μ (20)

= . . .−
∫

IRn

∇ ·
(

Πiδ(ui)δ(v)

√
det(GT G)PG′∇v

‖PG′∇v‖2

)
μ (21)

=
∫

IRn

δ′(v)Πiδ(ui)
√

det(GT G) μ (22)

−
∫

IRn

∇ ·
(√

det(GT G) PG′∇v

‖PG′∇v‖2 Πiδ(ui)

)
δ(v)μ (23)

−
∫

IRn

Πiδ(ui)

(√
det(GT G) PG′∇v

‖PG′∇v‖2

)
· ∇v δ′(v)μ (24)

= −
∫

IRn

∇ ·
(√

det(GT G)PG′∇v

‖PG′∇v‖2 Πiδ(ui)

)
δ(v)μ (25)

Since
√

det(GT G) PG′∇v

‖PG′∇v‖2 · ∇v =
√

det(GT G) .

= −
∫

IRn

∇ ·
(√

det(GT G)PG′∇v

‖PG′∇v‖2 Πi>1δ(ui)

)
δ(u1)δ(v)μ (26)

−
∫

IRn

√
det(GT G) PG′∇v · ∇u1

‖PG′∇v‖2 Πi>1δ(ui)δ′(u1)δ(v)μ . (27)

But PG′∇v · ∇ui = 0. Thus, repeating the same argument

= −
∫

IRn

∇ ·
(√

det(GT G)PG′∇v

‖PG′∇v‖2

)
Πiδ(ui)δ(v)μ (28)

= −
∫

S

1√
det(GT G)

∇ ·
(√

det(GT G)PG′∇v

‖PG′∇v‖2

)
μ . (29)

And this should hold for every μ. By naturally extending the variation to all of
IRn we get the gradient descend equation for the Beltrami flow:

dv

dt
=

1√
det(GT G)

∇ ·
(√

det(G′T G′)PG′∇v

‖PG′∇v‖

)
. (30)
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Abstract. This paper addresses the problem of calibrating camera lens distor-
tion, which can be significant in medium to wide-angle lenses. Our approach is 
based on the analysis of distorted images of straight lines. We use a PDE-based 
level set method to find the lens distortion parameters that straighten these lines. 
One advantage of this method is that it integrates the extraction of image dis-
torted lines and the computation of distortion parameters within one energy 
functional which is minimized during level set evolution. Some experiments to 
evaluate the performance of this approach are reported. 

1   Introduction 

Variational methods and partial differential equations (PDEs) are being more and 
more used to analyze, understand and exploit properties of images in order to design 
powerful application techniques, see for example [2, 3, 4]. Variational methods for-
mulate an image processing or computer vision problem as an optimization problem 
depending on the unknown variables (which are functions) of the problem. When the 
optimization functional is differentiable, the calculus of variations provides a tool to 
find the extremum of the functional leading to a PDE whose steady state gives the so-
lution of the imaging or vision problem. A very attractive property of these mathe-
matical frameworks is to state well-posed problems to guarantee existence, unique-
ness and regularity of solutions [3]. 

In this work we use a PDE-based level set method to calibrate camera lens distor-
tion, which can be significant in medium to wide-angle lenses. Applications that re-
quire 3-D modeling of large scenes, (e.g., [8, 9, 10]) or image compositing over a 
large scene area, (e.g., [11, 12, 13]) typically use cameras with such wide fields of 
view. In such instances, the camera distortion effect has to be removed by calibrating 
the camera’s lens distortion and subsequently undistorting the input image. 

The lens distortion parameters are most often estimated along with all (extrinsic 
and intrinsic) parameters of the camera model (see for example [5,6]). This is done 
using a set of 3D-to-2D correspondences extracted with the help of a calibration ob-
ject of known structure. The problem with these methods is the fact that there is some 
kind of coupling between internal parameters, including distortion parameters, and 
external parameters that result in high errors on the camera internal parameters [7]. 
Moreover obtaining accurate coordinates of 3D scene points is sometimes demanding 
or impossible (e.g. in case of snapshots already recorded).  
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In contrast, another family of nonmetric methods have been proposed, which do 
not rely on known scene points [7], [19], and [20]. Instead, these methods rely on the 
fact that straight lines in the scene must always perspectively project to straight lines 
in the image. This means that curvature of lines in the image is due to lens distortion. 
Using this principle, distortion parameters that map distorted image curves to straight 
lines can be estimated. Once estimated, the images can be undistorted by applying the 
inverse of the distortion function to the entire image or image features. 

We will focus in this paper on recovering the radial component of lens distortion, 
as it is often the most prominent in images. We propose a variant of a level set formu-
lation of the well-known Mumford-Shah functional in a way that permits the simulta-
neous segmentation of linear image objects and estimation of radial lens distortion 
coefficients in a calibration image. Our method thus belongs to the group of nonmet-
ric calibration techniques. The computed coefficients can then be applied to undistort 
any images taken by the same camera.  One key feature of our method is that it inte-
grates the extraction of image features needed for calibration and the computation of 
distortion parameters within one energy functional, which is minimized during level 
set evolution. Thus our approach, unlike most other nonmetric calibration methods, 
avoids the propagation of errors in feature extraction onto the computation stage. This 
results in a more robust computation even at high noise levels. 

The closest work to ours is that of Kang [14]. He used the traditional snake to cal-
culate the radial lens distortion parameters. However, his method is sensitive to the 
location of the initial contour, so the user should specify the position of the initial 
contour. In contrast, our level-set based method has some global convergence prop-
erty that makes it not sensitive to the initial level set.  

The organization of this paper is as follows: In Section 2, we briefly review a level 
set formulation of the piecewise-constant Mumford-Shah functional, as proposed in 
[1]. In Section 3, we show the lens distortion model. Section 4 presents a variational 
framework to extract the linear objects and compute lens distortion coefficient from 
the image. We present the experimental results in Section 5. Our conclusions and fu-
ture work are presented in Sections 6. 

2   Region-Based Segmentation with Level Sets 

In several papers [1, 15, 16], Chan and Vese detailed a level set implementation of the 
Mumford-Shah functional, which is based on the use of the Heaviside function as an 
indicator function for the separate phases. 

The Chan-Vese method used a piecewise constant, region-based formulation of the 
functional, which allows the contour to converge to the final segmentation over fairly 
large distances, while local edge and corner information is well preserved. It can de-
tect cognitive contours (which are not defined by gradients), and contours in noisy 
images. This model does not contain a balloon term, which induces a bias favoring ei-
ther contraction or expansion; however it can detect objects of interest inside or out-
side the initial contour.  

According to the level-set framework a contour, C , is embedded in a single level 
set function ℜ→Ω:φ   such that:  
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In the Mumford-shah model, a piecewise constant segmentation of an input image 
f is given by [1]: 
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where 1c �and 2c are the mean values of the image f  inside and outside the curve de-

fined as a zero-level set of φ , respectively, and 21,,, λλμ v �are regularizing parame-

ters to be estimated or chosen a priori. εH ψis the regularized Heaviside function de-

fined in [1] as       
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The regularized εH  and εδ  having a discretization with a support larger than zero 

permits the detection of interior contours – for example if one wants to segment a 
ring-like structure, starting from an initial contour located outside the ring. 

The Euler-Lagrange equation for this functional  is implemented by the following 
gradient descent [1]: 
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where the scalars 1c  and 2c  are updated with the level set evolution and given by:  
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3   Camera Distortion Model 

The standard model for the radial and decentering distortion [5] is mapping from the 
observable, distorted image coordinates, ),( yx , to the unobservable, undistorted im-

age plan coordinates, ),( uu yx , using the equation: 
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where 
,,, 222 yxrcyycxx yx

)))) +=−=−= and 321 ,, κκκ  are the coefficients of radial 

distortion and 321 ,, ΡΡΡ �are the coefficients of the decentering distortion. r  ψis the 

radius of an image point from the distortion center, defined as ),( yx cc  above.  

In this work we seek to recover, 1κ , as it has the most dominating effect. We as-

sume the distortion center to be the image center whereas all other coefficients are 
neglected. So the distortion model becomes: 
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4   Our Approach 

Our goal here is to extend the energy functional (2) in order to force the level set to 
segment linear, or should-to-be-linear, objects from the image and simultaneously 
solve for the lens distortion parameters. Let us assume that an image f  consists of 

multiple, disjoint objects each of them is contained in a level sets { iφ }.  To realize 

this assumption, we run the evolution of the Chan-Vese level set formulation follow-
ing (5-7). After a predefined number of iterations, the level set will be sufficiently 
close to the boundaries of the different objects in the image. This provides an initial 
separation of the image objects. At this point, the level set function φ  is partitioned to 

L level set functions, { iφ }, where L  is the number of initially detected objects in the 

image. The separation of the level set functions is done by applying connected com-
ponents labeling to )(φH . Each separated level set function can be then reinitialized 

to a distance function [2]. Note that the overall level set can be given by 
),,,max( 21 Lφφφφ L= . Similarly, the image f  is partitioned into L images, if , 

each supposedly contains one object: )( ii Hff φ×= .   

Having done this, the energy functional we then consider is 
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where 
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Here α  is a nonnegative parameter controlling the emphasize on the second term 

LineE , which measures how well a level set presents a line in the undistorted image 

coordinates ),( uu yx , with iθ  being the orientation of the normal to the line, 

and iρ being the distance to the line from the origin. Note that the undistorted coordi-

nates are related to the given distorted image coordinates ),( yx via the distortion 

parameter 1κ  as in (9). Note also in this formulation, we allow a level set to have 

mean values inside (represented by ic1 ) and outside (represented by ic2 ) its zero-level 

contour different from the other level sets. As such, the method is able to segment ob-
jects of different intensities. This is in contrast to the original two-phase Chan-Vese 
formulation. Although multi-phase level sets [17] can achieve this, it is less conven-
ient for our purpose and work in this paper. 
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Similarly, the scalars }{ 1
ic  and }{ 2

ic  are given by: 
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As for 1κ  that minimizes (10), we start with an initial guess 0
1κ (in our implementa-

tion, we take it 0). Introducing an artificial time, t , 1κ  is then updated according to 

the gradient decent rule 
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Finally we consider the minimization with respect to iφ , which is done by deducing 

the associated Euler-Lagrange equation for iφ : 
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where the scalars iρ , iθ ,  ic1 , ic2 ,and 1κ  are updated with the level set evolution ac-

cording to (12, 14, 17, 18, 19). The weights have the same meaning as before. In the 
steady state the value of 1κ  is the required lens distortion coefficient. In our imple-

mentation, we choose the regularizing parameters as follows: First half of the itera-
tions (total = 200), we choose a small α  to decrease the effect of line parameters al-
lowing all objects in the image be segmented. We use the values: 1021 == λλ , 

2255001.0 ×=μ , 0== αv . In the second half of iterations, we increase the effect of 
the line parameters and the area parameter to detect lines objects and ignore other ob-
jects in the image. The values are, 6101×=v , 600=α . For highly noisy images we 

choose the value of 22555.0 ×=μ  so that the zero level set of φ  ignores the small 

objects (due to noise) during the evolution. 
One point still needs some clarification. The input image is initially partitioned into 

multiple level sets, each containing an image object. The question is what happens if 
one such object is not a line or a curved line. In this case, the final shape of its zero 
level set for that object will be its axis of second moment (elongation axis). To get 
around this, the weight of the area term, v , in our formulation is increased. This 
causes the level set iφ  associated with a non-linear object to favor taking on negative 
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values all over the image if thus ignoring the undesired object without affecting the 

distortion calibration procedure, see Fig. 1. Fig. 2 illustrates the separation of an im-
age into a number of level sets. Please note that this method thus detects only linear or 
nearly linear objects in an image; It discards objects of other shapes, e.g., a box (even 
if it has straight linear boundaries). 
 

    
 

    

Fig. 1. Evolution of the boundary for a level set under functional (10). Due to the LineE term, 

the final shape of the boundary is the second moment axis of the object��Increasing v  causes 
smaller part of the object axis be detected. Further increase in v  ignores the non-linear object��

5   Experimental Results 

In this section, the performance of our technique is assessed using both synthetic and 
real image data. The synthetic images provide exact knowledge of line positions, ori-
entations and distortion parameters, so precise quantitative evaluation of performance 
is possible. The performance on real images is shown to demonstrate the practical im-
plementation of the technique. 

5.1   Synthetic Data 

A 160 ×120 image consisting of 6 lines is used as a test image as shown in Fig. 3(a). 
Using a big distortion coefficient 4

1 101 −×=κ , the lines’ points were distorted, see 

Fig. 3(b). Applying the proposed method, the value of distortion coefficient was 

found 5
1 109.6215 −×=κ , which is close enough.  

To simulate non-ideal conditions in real images, the distorted image is noised by a 
Gaussian noise with zero-mean and standard deviation, σ , that is varied from 5  to 
40  with a step of 5 . We then used our approach to estimate the distortion parameter 
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            (a)   (b)   (c) 

      
      (d)        (e) 

Fig. 2. The steps to extract a line in an image with multiple objects: (a) initial image and con-
tour, (b) initial segmented objects (L=2), (c) 1f  and associated 1φ , (d) 2f  and associated 

2φ (d) final ),max( 21 φφφ =  

  

    
(a)        (b) 

    
(c)      (d) 

Fig. 3. Performance on synthetic images: (a) the true image, (b) distorted image 4
1 101 −×=κ , 

(c) noised image 35=σ , (d) undistorted image 
 

from the noisy data. A sample noisy distorted image is shown in Fig. 3(c) for σ =35. 
The distortion coefficient estimated by our approach is then used to correct the dis-
torted image (before adding the noise) and the output image is shown in Fig. 3(d). 
Since comparing the ground truth distortion parameters and the estimated ones does 
not give an intuitive feel of how much distortion remains in the image, we have con-
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sidered the RMS error in pixels between the true and the undistorted line points as an 
accuracy measure [14]. We used this measure, denoted RMSE , to evaluate the accuracy 

of the recovered radial parameter versus different noise levels. The value of RMSE at 

each σ  is plotted in Fig. 4.  
For the sake of comparison, the same experiment is repeated using two well-known 

methods [7] and [19], which are based on the minimization of distortion measures of 
image lines. Prescott and McLean [19] minimized the sum of square distances of the 
lines’ points from their best-fit lines, while Devernay and Faugeras [7] minimized the 
χ2 of the line least square approximation. Note both methods need points belonging to 
image lines be extracted before the optimization procedures.  In our implementation, 
we used the Levenberg-Marquardt (LM) algorithm to find the radial distortion coeffi-
cient minimizing each of the distortion measures. The values of RMSE  for both meth-

ods versus σ are also shown in Fig. 4.  
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Fig. 4. The variation of RMSE  versus noise standard deviation (σ ) for three methods 

As shown in Fig. 4, the accuracy of our proposed method remains within 0.1 pixels 
up to a high noise level of   ≅35. Afterwards, the error starts to increase rapidly. Both 
the other two methods start to be effected significantly by noise at lower levels. This 
proves that our approach is quite robust to additive noise, especially in comparison to 
the other two methods. This is attributed to the fact that both methods, similar to most 
existing techniques for lens distortion calibration in literature, proceed after applying 
a feature extraction stage, typically, based on edge detection and edge linking, which 
can be severely affected by high noise levels. Even if the input image has been pre-
processed with a low-pass filter (in our implementation of the methods in [7] and 
[19], we smoothed out the noisy input images with a 7x7 Gaussian mask, which was 
not used at all in our method), the input to the distortion estimation process would still 
be contaminated with pretty much useless data. 
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5.2   Real Data 

This approach is also applied real images acquired by a BenQ camera. To calibrate 
the radial lens distortion coefficient, we captured an image of a group of straight lines 
on a white paper, see Fig. 5(a). Such a calibration pattern is easily prepared (e.g., with 
just a printer) without any special construction overhead. Another sample image cap-
tured by the same camera is shown in Fig. 5(b). Both acquired images are 160 120 
and have noticeable lens distortion. Our approach is then applied to the calibration 
image to recover the value of lens distortion parameter. Figs. 5(c-d) show the initial 
and final zero-level sets, respectively. Our method took less than a minute on P4 

2.8GHz pc. The estimated 1κ  is employed to undistort the original distorted images 

taken by the camera, see Fig. 5(e-f). Clearly 3D lines are indeed mapped to straight 
lines in the undistorted images. One may notice some artifacts with the undistorted 
images due to the inverse mapping of the distortion model, which can be fairly fixed, 
if desired, by doing some post-processing. 

    
(a)                  (b) 

    
(c)          (d) 

     
(e)         (f) 

Fig. 5. Performance on real images: (a) the calibration image which is used to get 1κ , (b) input 

distorted image, (c) initial zero level set, (d) final zero level set (e) calibration image undis-
torted, (f) output undistorted image 
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6   Conclusions 

We have presented a variational approach to calibrate camera lens distortion. In order 
to achieve this, we have extended the level set formulation of Chan and Vese by a 
term, which depends on the parameters of lens distortion parameters. By simultane-
ously minimizing the proposed energy functional with respect to the level set function 
and the line parameters, the linear shapes, the line parameters and lens distortion pa-
rameters are obtained.   

All this approach needs is an image captured by the camera for a group of straight 
lines on a white paper. Such a calibration pattern is easily prepared (e.g., with just a 
printer) without any special construction overhead. 

One key advantage of our method is that it integrates the extraction of image fea-
tures needed for calibration and the computation of distortion parameters; thus avoid-
ing, unlike most other nonmetric calibration methods, the propagation of errors in fea-
ture extraction onto the computation stage. This results in a more robust computation 
even at high noise levels. Our experimental results verified the accuracy and noise-
robustness of our method. 

Our future research is directed towards more comparisons between our method and 
other existing methods that recover lens distortion parameters. In addition, it is di-
rected towards incorporating more lens distortion parameters in order to achieve more 
accurate calibration. 
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